Skip to main content
Log in

Swift Heavy Ion Irradiation Induced Effects in Si/SiOx Multi-Layered Films and Nanostructures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Amorphous Si/SiOx multilayered films and nanostructures were deposited on Si substrates by the glancing angle deposition technique using Ar ion beam sputtering of a Si sputter target in an intermittent oxygen atmosphere at room temperature. The chemical composition of the samples was characterized by time-of-flight secondary ion mass spectrometry, as well as - for quantifying these first results - by elastic recoil detection analysis using a 200 MeV Au ion beam. The latter method was found to lead to a significant alteration of the sample morphology, resulting in the formation of complex nanometric structures within the layer stacks. In order to investigate these swift heavy ion irradiation induced effects in more detail, a series of experiments was performed to determine the dominating influences. For this purpose, specific glancing angle deposited multi-layered films and nanostructures were irradiated to constant ion fluence with the same 200 MeV Au ion beam at different incidence angles. Scanning electron microscopy of the stacks before and after swift Au ion irradiation revealed considerable changes in film morphology and density as a function of the ion incidence angle, such as an increased porosity of the silicon layers, accompanied by layer swelling. In contrast, the SiOx layers did not show such effects, but exhibited clearly visible swift heavy ion tracks. The observed effects became stronger with decreasing ion incidence angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Robbie M.J. Brett, and A. Lakhtak J. Vac. Sci. Technol. A13, 2991 (1995).

    Article  Google Scholar 

  2. A. Lakhtak R. Messier M.J. Brett and K. Robbie Innov. Mater. Res. 1, 165 (1996).

    Google Scholar 

  3. M.M. Hawkeye and M.J. Brett J. Vac. Sci. Technol. A25, 1317 (2007).

    Article  Google Scholar 

  4. M. Toulemonde S. Bouffard and F. Studer Nucl. Instrum. Meth. B91, 108 (1994).

    Article  Google Scholar 

  5. C. Patzig B. Rauschenbach W. Erfurth and A. Milenin J. Vac. Sci. Technol. B25, 833 (2007).

    Article  Google Scholar 

  6. W. Assmann H. Huber Ch. Steinhausen M. Dobler H. Glückler, and A. Weidinger Nucl. Instrum. Meth. B89, 131 (1994).

    Article  Google Scholar 

  7. W. Assmann Nucl. Instrum. Meth. B64, 267 (1992).

    Article  CAS  Google Scholar 

  8. A. Bergmer G. Dollinger and C.M. Frey Nucl. Instrum. Meth. B99, 488 (1995).

    Article  Google Scholar 

  9. S. Klaumünzer, Nucl. Instrum. Meth. B215, 345 (2004).

    Article  Google Scholar 

  10. S. Klaumünzer, S. Löffler Changlin Li, M. Rammensee G. Schumacher and H. Ch. Neitzert Radt. Eff. Defect. S. 108, 131 (1989).

    Article  Google Scholar 

  11. A. Hedler S. Klaumünzer, and W. Wesch Nucl. Instrum. Meth. B242, 85 (2006).

    Google Scholar 

  12. A. Hedler S. Klaumünzer, and W. Wesch Phys. Rev. B72, 054108 (2005).

    Article  Google Scholar 

  13. H. Huber W. Assmann R. Grötzschel, H.D. Mieskes A. Mücklich, H. Nolte W. Prusseit Mater. Sci. Forum 248-249, 301 (1997).

    Article  Google Scholar 

  14. S.G. Mayr and R.S. Averback Phys. Rev. B71, 134102 (2005).

    Article  Google Scholar 

  15. W. Bolse Mater. Sci. Eng. R12, 53 (1994).

    CAS  Google Scholar 

  16. J.-F. Carlotti A.D. Touboul M. Ramonda M. Caussanel C. Guasch J. Bonnet and J. Gaslot {tppl. Phys. Lett.} 88, 041906 (2006).

  17. W.M. Arnoldbik N. Tomozeiu and F.H.P.M. Habraken Nucl. Instrum. Meth. B219, 312 (2004).

    Article  Google Scholar 

  18. A. Benyagoub S. Löffler, M. Rammensee S. Klaumünzer, G. Saemann-Ischenko, Nucl. Instrum. Meth. B65, 228 (1992).

    Article  CAS  Google Scholar 

  19. A. Audouard J. Dural M. Toulemonde A. Lovas G. Szenes and L. Thomé, Phys. Rev. B54, 15690 (1996).

    Article  Google Scholar 

  20. C. Trautmann S. Klaumünzer, and H. Trinkaus Phys. Rev. Lett. 17, 3648 (2000).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. Klaumünzer (Helmholtz-Zentrum Berlin für Materialien und Energie, Germany) for valuable discussions and for imparting a deeper insight into the mechanisms of the ion hammering effect, W. Wesch (University of Jena, Germany) for providing input concerning swift heavy ion induced effects in amorphous Ge, as well as M. Toulemonde (CIMAP, Laboratoire CEA-CNRS-ENSICAEN-Université de Caen, Caen, France) for bringing in his vast expertise in the field of swift heavy ion induced effects in matter.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlach, J., Patzig, C., Assmann, W. et al. Swift Heavy Ion Irradiation Induced Effects in Si/SiOx Multi-Layered Films and Nanostructures. MRS Online Proceedings Library 1181, 48–59 (2009). https://doi.org/10.1557/PROC-1181-DD04-01

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-1181-DD04-01

Navigation