Skip to main content
Log in

Photoluminescence and Photoluminescence Excitation Spectroscopy of Cu(In,Ga)Se2 Thin Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The role of intrinsic point defects on radiative recombination in Cu(In,Ga)Se2 thin films was investigated by photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Experiments were performed on device-grade polycrystalline layers and single crystal thin films. PL transitions identified by others as indicating a shallow state with an ionization energy of ∼16 meV is proposed to be a transition into band tail states rather than a distinct shallow defect. The presence of deep levels contributing to radiative recombination does not necessarily preclude the material from producing a high efficiency device and may suggest the absence of dominant non-radiative recombination pathways. The band edge width as measured by PLE and the separation of this edge from defect states are suggested to be potentially effective indicators of the quality of a material. Luminescence that appears to be connected with the absence of Na in the growth process persists in high Ga alloy, Na containing materials, suggesting that Na may become ineffective in passivating or eliminating certain defects in high Ga material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rockett, presented at the Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, 2002 (unpublished).

  2. J. Krustok, J. Raudoja, J. H. Schon, M. Yakushev and H. Collan, Thin Solid Films 361, 406–410 (2000).

    Article  Google Scholar 

  3. J. T. Heath, J. D. Cohen and W. N. Shafarman, Journal of Applied Physics 95 (3), 1000–1010 (2004).

    Article  CAS  Google Scholar 

  4. A. Rockett, D. Liao, J. T. Heath, J. D. Cohen, Y. M. Strzhemechny, L. J. Brillson, K. Ramanathan and W. N. Shafarman, Thin Solid Films 431, 301–306 (2003).

    Article  Google Scholar 

  5. N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. C. Lux-Steiner, R. Kniese and M. J. Romero, Thin Solid Films 480, 286–290 (2005).

    Article  Google Scholar 

  6. S. Siebentritt, N. Papathanasiou and M. Lux-Steiner, Physica Status Solidi B-Basic Solid State Physics 242 (13), 2627–2632 (2005).

    Article  CAS  Google Scholar 

  7. S. Niki, Y. Makita, A. Yamada, A. Obara, S. Misawa, O. Igarashi, K. Aoki and N. Kutsuwada, Japanese Journal of Applied Physics Part 2-Letters 33 (4A), L500–L502 (1994).

    Article  CAS  Google Scholar 

  8. R. A. Mickelsen, W. S. Chen, Y. R. Hsiao and V. E. Lowe, Electron Devices, IEEE Transactions on 31 (5), 542–546 (1984).

    Article  Google Scholar 

  9. P. W. Yu, Journal of Applied Physics 47 (2), 677–684 (1976).

    Article  CAS  Google Scholar 

  10. M. D. Lampert, B. K. Meyer, M. Hornung, K. W. Benz, A. Petersson and L. Samuelson, Journal of Crystal Growth 183 (3), 377-384 (1998).

    Article  CAS  Google Scholar 

  11. S. Zott, K. Leo, M. Ruckh and H. W. Schock, Journal of Applied Physics 82 (1), 356–367 (1997).

    Article  CAS  Google Scholar 

  12. S. Siebentritt and S. Schuler, Journal of Physics and Chemistry of Solids 64 (9-10), 1621–1626 (2003).

    Article  CAS  Google Scholar 

  13. J. H. Werner, J. Mattheis and U. Rau, Thin Solid Films 480, 399–409 (2005).

    Article  Google Scholar 

  14. M. J. Romero, K. Ramanathan, M. A. Contreras, M. M. Al-Jassim, R. Noufi and P. Sheldon, Applied Physics Letters 83 (23), 4770–4772 (2003).

    Article  CAS  Google Scholar 

  15. D. Liao and A. Rockett, Journal of Applied Physics 91 (4), 1978–1983 (2002).

    Article  CAS  Google Scholar 

  16. W. N. Shafarman, R. Klenk and B. E. McCandless, Journal of Applied Physics 79 (9), 7324–7328 (1996).

    Article  CAS  Google Scholar 

  17. N. Rega, S. Siebentritt, I. E. Beckers, J. Beckmann, J. Albert and M. Lux-Steiner, Thin Solid Films 431, 186–189 (2003).

    Article  Google Scholar 

  18. A. Rockett, Thin Solid Films 480, 2–7 (2005).

    Article  Google Scholar 

  19. S. M. Wasim, C. Rincon, G. Marin, P. Bocaranda, E. Hernandez, I. Bonalde and E. Medina, Physical Review B 64 (19) (2001).

    Google Scholar 

  20. J. T. Heath, J. D. Cohen, W. N. Shafarman, D. X. Liao and A. A. Rockett, Applied Physics Letters 80 (24), 4540–4542 (2002).

    Article  CAS  Google Scholar 

  21. T. Schmidt, K. Lischka and W. Zulehner, Physical Review B 45 (16), 8989–8994 (1992).

    Article  Google Scholar 

  22. S. Siebentritt, N. Rega, A. Zajogin and M. C. Lux-Steiner, Physica Status Solidi C 1 (9), 2304– 2310 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebert, D.N., Soares, J.A.N.T. & Rockett, A.A. Photoluminescence and Photoluminescence Excitation Spectroscopy of Cu(In,Ga)Se2 Thin Films. MRS Online Proceedings Library 1165, 305 (2009). https://doi.org/10.1557/PROC-1165-M03-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1165-M03-05

Navigation