Skip to main content
Log in

High-Permeability Particles for Magnetic Composites

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Electromagnetic shields and flux concentrators for magnetic sensors could utilize flexible and insulating composites applied using simple thin film deposition methods such as dip-coating, spin-coating, spraying, etc. As the first step towards development of composites with superior performance, efforts focused on isolating nanoparticles with large magnetizations under low fields. In this paper, we provide the results of proof-of-concept studies for two systems: metal-functionalized silicone-based materials (metal-silicone); and, Co-ferrite (Co2+1−xFe2+xFe3+2O4) nanoparticles. The metal-silicone materials studied included a polysiloxane that contained a pendant ferrocene where an optimum saturization magnetization of 5.9 emu/g (coercivity = 11 Oe) was observed. Co-ferrite nanoparticle samples prepared in this study showed unprecendented saturation magnetization (i.e., Ms > 150 emu/g) with low coercivity (Hc ∼ 10 Oe) at room temperature and offer potential application as flux concentrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ph.D. Dissertation, Zoha M. AL-Badri, “Metal Containing Polysiloxanes: Precursors to Novel Magnetic Ceramic Nanocomposites, (2004).

  2. E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, C. Estourne`s, C. D’Orleans, J.-L. Rehspringer, M. Kurmoo, Chem. Mater. 16, 5689-5609 (2004).

    Article  CAS  Google Scholar 

  3. R.T. Olsson, G. Salazar-Alvarez, M.S. Hedenqvist, U.W. Gedde, F. Lindberg, S.J. Savage, Chem. Mater. 17, 5109-5118 (2005).

    Article  CAS  Google Scholar 

  4. R. Betancourt-Galindo, O. Ayala-Valenzuela, L.A. Garcıa-Cerda, O. Rodrıguez Fernandez, J. Matutes-Aquino, G. Ramos, H. Yee-Madeira, J. Magn. Magn. Mater. 294, e33-e36 (2005); ibid pp e37-e41.

  5. N. Moumen, M.P. Pileni, J. Phys. Chem. 100, 1867-1873 (1996); A.T. Ngo, P. Bonville, M.P. Pileni, Eur. Phys. J. B9, 583-592 (1999).

    Article  Google Scholar 

  6. X. Li, C. Kutal, J. Alloys Comp. 349, 264-268 (2003).

    Article  CAS  Google Scholar 

  7. V. Pillai, D.O. Shah, J. Magn. Magn. Mater. 163, 243-248 (1996).

    Article  CAS  Google Scholar 

  8. C.T. Seip, E.E. Carpenter, C.J. O’Connor, V.T. John, S. Li, IEEE Trans. Magn. 34, 1111-1113 (1998).

    Article  CAS  Google Scholar 

  9. K.V.P.M. Shafi, A. Gedanken, R. Prozorov, J. Balogh, Chem. Mater. 10, 3445-3450 (1998).

    Article  CAS  Google Scholar 

  10. H. P. Klug, L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials; (Wiley, 1962), pp. 491-538

  11. J.C. Hoh, I.I. Yaacob, J. Mater. Res.17 (2002) 3105-3109.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sailer, R.A., Jeppson, P.J., Caruso, A.N. et al. High-Permeability Particles for Magnetic Composites. MRS Online Proceedings Library 906, 106 (2005). https://doi.org/10.1557/PROC-0906-HH01-06

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0906-HH01-06

Navigation