Skip to main content
Log in

A review of magnetic nanocomposites for EMI shielding: synthesis, properties, and mechanisms

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the proliferation of electronics and wireless devices, managing disruptive electromagnetic interference (EMI) has become imperative. This review examines recent advancements in magnetic nanocomposite materials for EMI shielding applications. Fundamentally, these multifunctional nanocomposites leverage the synergy between magnetic and conductive components to facilitate exceptional microwave absorption and reflection capabilities. The analysis begins by elucidating the physics of EMI shielding mechanisms, including reflection, absorption, and multiple internal reflections. Building on electromagnetic principles, the magnetic properties of nanocomposite constituents are discussed, emphasizing their role in enabling magnetic loss, dielectric loss, and eddy current induction within materials. The review then extensively explores common synthesis techniques for magnetic nanocomposites, such as co-precipitation, sol–gel, and hydrothermal methods. A detailed examination of the resulting nanocomposite characteristics and EMI shielding performance provides useful insights into composition-structure–property relationships. Moreover, innovative fabrication strategies based on physical vapor deposition are highlighted for their precision in controlling nanostructure morphology. Subsequently, the review dives into the nuanced interplay between dielectric, conductive, and magnetic nanocomposite components and their synergistic influence on EMI shielding. Current challenges are also discussed, encompassing issues like nanoparticle agglomeration and environmental durability. Finally, scalable production methods are reviewed as a crucial step towards real-world applications. This all-encompassing review synthesizes the frontiers of magnetic nanocomposite engineering, design, and fabrication for next-generation EMI shielding materials with tailored, application-specific shielding capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

(Reproduced with permission from ref. [96]).

Figure 9
Figure 10

(Reproduced with permission from ref. [99]).

Figure 11

(Reproduced with permission from ref. [101]).

Figure 12
Figure 13

(Reproduced with permission from ref. [104])

Figure 14
Figure 15

Similar content being viewed by others

Data and code availability

Data sharing is not applicable to this article as no new data were created or analysed in this study.

References

  1. Peng M, Qin F (2021) Clarification of basic concepts for electromagnetic interference shielding effectiveness. J Appl Phys 130:225108. https://doi.org/10.1063/5.0075019

    Article  CAS  Google Scholar 

  2. Wang J, Ma X, Zhou J, Du F, Teng C (2022) Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with Joule heating performance. ACS Nano 16:6700–6711. https://doi.org/10.1021/acsnano.2c01323

    Article  CAS  PubMed  Google Scholar 

  3. Liang C, Du Y, Wang Y, Ma A, Huang S, Ma Z (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater 4:979–988. https://doi.org/10.1007/s42114-021-00274-5

    Article  CAS  Google Scholar 

  4. Scott FJ, Sesti EL, Choi EJ, Laut AJ, Sirigiri JR, Barnes AB (2018) Magic angle spinning NMR with metallized rotors as cylindrical microwave resonators. Magn Reson Chem 56:831–835. https://doi.org/10.1002/mrc.4744

    Article  CAS  PubMed  Google Scholar 

  5. Couëdo F, Recoba Pawlowski E, Kermorvant J, Trastoy J, Crété D, Lemaître Y, Marcilhac B, Ulysse C, Feuillet-Palma C, Bergeal N, Lesueur J (2019) High-Tc superconducting detector for highly-sensitive microwave magnetometry. Appl Phys Lett 114:192602–192612. https://doi.org/10.1063/1.5090175

    Article  CAS  Google Scholar 

  6. Lu Z, Zeb K, Liu J, Liu E, Mao L, Poole PJ, Rahim M, Pakulski G, Barrios P, Jiang W, Poitras D (2021) Quantum dot semiconductor lasers for 5G and beyond wireless networks. In: PProc. SPIE 11690, Smart Photonic and Optoelectronic Integrated Circuits XXIII 116900N. https://doi.org/10.1117/12.2577084

  7. Kim M, Park H-P, Jung J-H (2022) Spread spectrum technique with random-linear modulation for EMI mitigation and audible noise elimination in IH appliances. IEEE Trans Industr Electron 69:8589–8593. https://doi.org/10.1109/TIE.2021.3102405

    Article  Google Scholar 

  8. Pardeshi A, Vyas A (2013) Wireless energy transfer. IOSR J Electr Electron Eng. 8(1):69–79

    Article  Google Scholar 

  9. Seidman SJ, Guag JW (2013) Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification. Biomed Eng Online 12:71–81. https://doi.org/10.1186/1475-925X-12-71

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abubakar I, Din J, Alhilali M, Lam HY (2017) Interference and electromagnetic compatibility challenges in 5G wireless network deployments. Indones J Electr Eng Comput Sci 5:612–621. https://doi.org/10.11591/ijeecs.v5.i3.pp612-621

    Article  Google Scholar 

  11. Soubercaze-Pun GTJBLRJDS& GG (2006) Robust GaN electronics for highly reliable BF and RF analog systems in aerospace applications. In: Proceedings of the CANEUS 2006: MNT for aerospace applications CANEUS2006: MNT for aerospace applications 81–87. https://doi.org/10.1115/CANEUS2006-11012

  12. Bashar Bhuiyan A, Jafor Ali M, Zulkifli N, Muthu Kumarasamy M (2020) Industry 4.0: challenges, opportunities, and strategic solutions for bangladesh. Int J Bus Manag Future 4(2):41–56

    Article  Google Scholar 

  13. Nof SY (2023) Springer handbook of automation (2 Edn,). Springer, Cham

    Book  Google Scholar 

  14. Pintor-Corona M, Gonzalez-Monzon AL, Mendoza-Santiago E (2019) Industria 4.0 en México, la administración inteligente en sistemas productivos. Rev de Tecnol de la Inf y Comun. https://doi.org/10.35429/jitc.2019.8.3.25.27

    Article  Google Scholar 

  15. Maouloud A, Klingler M, Besnier P (2021) A test setup to assess the impact of emi produced by on-board electronics on the quality of radio reception in vehicles. IEEE Trans Electromagn Compat 63:1844–1855. https://doi.org/10.1109/TEMC.2021.3072558

    Article  Google Scholar 

  16. Leuchter J, Bloudicek R, Boril J, Bajer J, Blasch E, Ali H (2021) Influence of aircraft power electronics processing on backup VHF radio systems. Electronics 10(7):777–803. https://doi.org/10.3390/electronics

    Article  Google Scholar 

  17. Hong S, Liu C, Hao S, Fu W, Peng J, Wu B, Zheng N (2022) Antioxidant high-conductivity copper paste for low-cost flexible printed electronics. Npj Flexible Electron 6:17. https://doi.org/10.1038/s41528-022-00151-1

    Article  CAS  Google Scholar 

  18. Aliofkhazraei M (2014) Handbook of functional nanomaterials

  19. Behrens S, Appel I (2016) Magnetic nanocomposites. Curr Opin Biotechnol 39:89–96. https://doi.org/10.1016/j.copbio.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  20. Mohapatra PP, Dobbidi P (2023) Development of spinel ferrite-based composites for efficient EMI shielding. Mater Chem Phys 301:127581. https://doi.org/10.1016/j.matchemphys.2023.127581

    Article  CAS  Google Scholar 

  21. Pasha A, Khasim S, Manjunatha SO (2023) Highly efficient EMI shielding applications of porous nickel–iron ferrite doped with yttrium nanocomposite thin films as a multifunctional material. J Mater Sci: Mater Electron 34:409–411. https://doi.org/10.1007/s10854-023-09844-3

    Article  CAS  Google Scholar 

  22. Pasha A, El-Rehim AFA, Ali AM, Srinivasamurthy KM, Manjunatha SO, Wang S, Angadi VJ (2023) High performance EMI shielding applications of Co0.5Ni0.5CexSmyFe2-x-yO4 nanocomposite thin films. Ceram Int 49:2224–2235. https://doi.org/10.1016/j.ceramint.2022.09.189

    Article  CAS  Google Scholar 

  23. Gao Y, Wang Z (2021) Microwave absorption and electromagnetic interference shielding properties of Li–Zn ferrite-carbon nanotubes composite. J Magn Magn Mater 528:167808–167816. https://doi.org/10.1016/j.jmmm.2021.167808

    Article  CAS  Google Scholar 

  24. Çakmakçı N, Kim G, Song H, Shin M, Jung Y, Jeong Y (2023) Ferrite-decorated ultrathin and lightweight carbon nanotube film for electromagnetic interference shielding. ACS Appl Nano Mater 6:18229–18237. https://doi.org/10.1021/acsanm.3c03492

    Article  CAS  Google Scholar 

  25. Younes H, Mansoori M, Chaturvedi P, Li R, Almahmoud S, Lee S-E, Koo TM, Kim YK, Choi D (2022) Magnetic spinel manganese ferrite nanocrystal carbon nanotube thin mats with improved electromagnetic shielding performance. J Nanopart Res 24:258–270. https://doi.org/10.1007/s11051-022-05632-y

    Article  CAS  Google Scholar 

  26. Liu J, Zhang J, Li Y, Zhang M (2015) Microwave absorbing properties of barium hexa-ferrite/polyaniline core-shell nano-composites with controlled shell thickness. Mater Chem Phys 163:470–477. https://doi.org/10.1016/j.matchemphys.2015.08.001

    Article  CAS  Google Scholar 

  27. Xu F, Ma L, Huo Q, Gan M, Tang J (2015) Microwave absorbing properties and structural design of microwave absorbers based on polyaniline and polyaniline/magnetite nanocomposite. J Magn Magn Mater 374:311–316. https://doi.org/10.1016/j.jmmm.2014.08.071

    Article  CAS  Google Scholar 

  28. Sun Y, Liu X, Jin C, Xia A, Zhao S, Li W, Feng C, Xiao F, Wu Y (2013) A facile route to carbon-coated vanadium carbide nanocapsules as microwave absorbers. RSC Adv 3:18082–18086. https://doi.org/10.1039/C3RA42544D

    Article  CAS  Google Scholar 

  29. Ting T-H, Wu K-H (2010) Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J Magn Magn Mater 322:2160–2166. https://doi.org/10.1016/j.jmmm.2010.02.002

    Article  CAS  Google Scholar 

  30. Gonzalez-Vizuete P, Bernal-Mendez J, Freire MJ, Martin-Prats MA (2021) Improving performance of compact EMI filters by using metallic and ferrite sheets. IEEE Trans Power Electron 36:9057–9068. https://doi.org/10.1109/TPEL.2021.3057235

    Article  Google Scholar 

  31. Parajuli D, Uppugalla S, Murali N, Ramakrishna A, Suryanarayana B, Samatha K (2023) Synthesis and characterization MXene-Ferrite nanocomposites and its application for dying and shielding. Inorg Chem Commun 148:110319–110333. https://doi.org/10.1016/j.inoche.2022.110319

    Article  CAS  Google Scholar 

  32. Saini M, Shukla R (2020) Silver nanoparticles-decorated NiFe2O4/polyaniline ternary nanocomposite for electromagnetic interference shielding. J Mater Sci: Mater Electron 31:5152–5164. https://doi.org/10.1007/s10854-020-03075-6

    Article  CAS  Google Scholar 

  33. Goldman A (2006) Modern ferrite technology. Springer Science & Business Media

    Google Scholar 

  34. Hui L, Rehman SU, Zhang R, Yongqiang D, Haihua L, Munan Y (2023) Fabrication and application prospects of Pr–Fe–B/Alnico nanocomposite alloys. J Rare Earths. https://doi.org/10.1016/j.jre.2023.08.008

    Article  Google Scholar 

  35. Duerrschnabel M, Yi M, Uestuener K, Liesegang M, Katter M, Kleebe H-J, Xu B, Gutfleisch O, Molina-Luna L (2017) Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets. Nat Commun 8:54. https://doi.org/10.1038/s41467-017-00059-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xie G, Yin S, Zhang F, Lin P, Gu B, Lu M, Du Y, Yuan Z (2004) Effects of Mn doping on structural and magnetic properties in NdFeB nanocomposites. Mater Lett 58:636–640. https://doi.org/10.1016/S0167-577X(03)00584-6

    Article  CAS  Google Scholar 

  37. Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilčáková (2020) Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications, 1st ed. Elsevier

  38. Zahn D, Landers J, Buchwald J, Diegel M, Salamon S, Müller R, Köhler M, Ecke G, Wende H, Dutz S (2022) Ferrimagnetic large single domain iron oxide nanoparticles for hyperthermia applications. Nanomaterials 12:343–355. https://doi.org/10.3390/nano12030343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alzoubi GM, Masadeh AS, Shatnawi MTM (2022) Investigation of the structural, morphological, and magnetic properties of small crystalline Co–Cu ferrite nanoparticles in the single-domain regime. AIP Adv 12:065101. https://doi.org/10.1063/5.0087446

    Article  CAS  Google Scholar 

  40. Christiansen MG, Mirkhani N, Hornslien W, Schuerle S (2022) Localized nanoscale induction by single domain magnetic particles. bioRxiv 2020.07.16.207126. https://doi.org/10.1101/2020.07.16.207126

  41. Lee H, Ryu SH, Kwon SJ, Choi JR, Lee S, Park B (2023) Absorption-dominant mmwave EMI shielding films with ultralow reflection using ferromagnetic resonance frequency tunable M-type ferrites. Nanomicro Lett 15:76. https://doi.org/10.1007/s40820-023-01058-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suthar M, Roy PK (2022) Structural, electromagnetic, and Ku-band absorption characterization of La-Mg substituted Y-type barium hexaferrite for EMI shielding application. Mater Sci Eng: B 283:115801. https://doi.org/10.1016/j.mseb.2022.115801

    Article  CAS  Google Scholar 

  43. Kaur P, Bahel S, Narang SB (2018) Broad-band microwave absorption of Sr0.85La0.15(MnZr)xFe12–2xO19 hexagonal ferrite in 18–40 GHz frequency range. J Magn Magn Mater 460:489–494. https://doi.org/10.1016/j.jmmm.2018.01.042

    Article  CAS  Google Scholar 

  44. Yadav RS, Kuřitka I, Vilčáková J, Machovský M, Škoda D, Urbánek P, Masař M, Gořalik M, Urbánek M, Kalina L, Havlica J (2019) Polypropylene nanocomposite filled with spinel ferrite NiFe2O4 Nanoparticles and in-situ thermally-reduced graphene oxide for electromagnetic interference shielding application. Nanomaterials 9(4):621–647. https://doi.org/10.3390/nano9040621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peymanfar R, Ghorbanian-Gezaforodi S, Selseleh-Zakerin E, Ahmadi A, Ghaffari A (2020) Tailoring La0.8Sr0.2MnO3/La/Sr nanocomposite using a novel complementary method as well as dissecting its microwave, shielding, optical, and magnetic characteristics. Ceram Int 46:20896–20904. https://doi.org/10.1016/j.ceramint.2020.05.139

    Article  CAS  Google Scholar 

  46. Anum R, Zahid M, Siddique S, Shakir HMF, Rehan ZA (2021) PVC based flexible nanocomposites with the incorporation of polyaniline and barium hexa-ferrite nanoparticles for the shielding against EMI, NIR, and thermal imaging cameras. Synth Met 277:116773. https://doi.org/10.1016/j.synthmet.2021.116773

    Article  CAS  Google Scholar 

  47. Iqbal S, Khatoon H, Kotnala RK, Ahmad S (2019) Mesoporous strontium ferrite/polythiophene composite: Influence of enwrappment on structural, thermal, and electromagnetic interference shielding. Compos B Eng 175:107143. https://doi.org/10.1016/j.compositesb.2019.107143

    Article  CAS  Google Scholar 

  48. Iqbal S, Shah J, Kotnala RK, Ahmad S (2019) Highly efficient low cost EMI shielding by barium ferrite encapsulated polythiophene nanocomposite. J Alloys Compd 779:487–496. https://doi.org/10.1016/j.jallcom.2018.11.307

    Article  CAS  Google Scholar 

  49. Chakraborty T, Sharma S, Saha S, Das S, Sinha Mohapatra A, Sutradhar S (2023) Ni–Zn–Cu-ferrite-PVDF multiphase nanocomposite material for the application of multiferroics and improved EMI shielding effectiveness. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.05.092

    Article  Google Scholar 

  50. Darwish MSA, Kim H, Lee H, Ryu C, Lee JY, Yoon J (2019) Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method. Nanomaterials 9(8):1176–1197. https://doi.org/10.3390/nano9081176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ba-Abbad MM, Benamour A, Ewis D, Mohammad AW, Mahmoudi E (2022) Synthesis of Fe3O4 nanoparticles with different shapes through a co-precipitation method and their application. JOM 74:3531–3539. https://doi.org/10.1007/s11837-022-05380-3

    Article  CAS  Google Scholar 

  52. Al-Alawy AF, Al-Abodi EE, Kadhim RM (2018) Synthesis and characterization of magnetic iron oxide nanoparticles by co-precipitation method at different conditions. J Eng 24:60–72. https://doi.org/10.31026/j.eng.2018.10.05

    Article  Google Scholar 

  53. Alhussien MA, Abd AN (2022) Synthesis and characterization of pure and Au doped Fe3O4 using co-precipitation method. Int J Health Sci 6(S4):12537–12525. https://doi.org/10.53730/ijhs.v6ns4.12058

    Article  Google Scholar 

  54. Mohebbi M, Allafchian A, Jalali SAH, Kameli P (2018) Synthesis and characterisation of Fe3O4 at MPTMS at Au nanocomposite by sol–gel method for the removal of methylene blue. Micro Nano Lett 13:979–984. https://doi.org/10.1049/mnl.2018.0127

    Article  CAS  Google Scholar 

  55. Lin J, He Y, Du X, Lin Q, Yang H, Shen H (2018) Structural and magnetic studies of Cr3+ substituted nickel ferrite nanomaterials prepared by sol-gel auto-combustion. Crystals (Basel) 8(10):384–393. https://doi.org/10.3390/cryst8100384

    Article  CAS  Google Scholar 

  56. Bandaru S, Majji RK, Bassa S, Chilla PN, Yellapragada R, Vasamsetty S, Jeldi RK, Korupolu RB, Sanasi PD (2016) Magnetic nano cobalt ferrite catalyzed synthesis of 4H-Pyrano[3,2-h]quinoline derivatives under microwave irradiation. Green Sustain Chem 06:101–109. https://doi.org/10.4236/gsc.2016.62009

    Article  CAS  Google Scholar 

  57. Atanasov R, Brinza E, Bortnic R, Hirian R, Souca G, Barbu-Tudoran L, Deac IG (2023) Magnetic and magnetocaloric properties of nano- and polycrystalline bulk manganites La0.7Ba(0.3−x)CaxMnO.3 (x ≤ 02.5). Magnetochemistry 9(7):170–186. https://doi.org/10.3390/magnetochemistry9070170

    Article  CAS  Google Scholar 

  58. Unni M, Uhl AM, Savliwala S, Savitzky BH, Dhavalikar R, Garraud N, Arnold DP, Kourkoutis LF, Andrew JS, Rinaldi C (2017) Thermal decomposition synthesis of iron oxide nanoparticles with diminished magnetic dead layer by controlled addition of oxygen. ACS Nano 11:2284–2303. https://doi.org/10.1021/acsnano.7b00609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen R, Christiansen MG, Anikeeva P (2013) Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. ACS Nano 7:8990–9000. https://doi.org/10.1021/nn4035266

    Article  CAS  PubMed  Google Scholar 

  60. Roca AG, Morales MP, Serna CJ (2006) Synthesis of monodispersed magnetite particles from different organometallic precursors. In: 2006 IEEE International Magnetics Conference (INTERMAG) 42(10):3025–3029. https://doi.org/10.1109/TMAG.2006.880111

  61. Gonzales M, Mitsumori LM, Kushleika JV, Rosenfeld ME, Krishnan KM (2010) Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127. Contrast Media Mol Imaging 5:286–293. https://doi.org/10.1002/cmmi.391

    Article  CAS  PubMed  Google Scholar 

  62. Huang HE, Liu NA, Wang X, Zhong M, Huang X Application of Hydrothermal and Solvothermal Method in Synthesis of MoS2. 73(4):6–35. https://doi.org/10.37358/RC.22.4.8544

  63. Hermosa GC, Chen W-C, Wu H-S, Liao C-S, Sun Y-M, Wang S-F, Chen Y, Sun A-C (2020) Investigations of the effective parameters on the synthesis of monodispersed magnetic Fe3O4 by solvothermal method for biomedical applications. AIP Adv 10:015234. https://doi.org/10.1063/1.5130063

    Article  CAS  Google Scholar 

  64. Mahajan R, Suriyanarayanan S, Nicholls IA (2021) Improved solvothermal synthesis of γ-Fe2O3 magnetic nanoparticles for SiO2 coating. Nanomaterials 11(8):1–13. https://doi.org/10.3390/nano11081889

    Article  CAS  Google Scholar 

  65. Nandihalli N, Gregory DH, Mori T (2022) Energy-saving pathways for thermoelectric nanomaterial synthesis: hydrothermal/solvothermal, microwave-assisted, solution-based, and powder processing. Adv Sci 9:2106052–2106113. https://doi.org/10.1002/advs.202106052

    Article  CAS  Google Scholar 

  66. Elmi GR, Saleem K, Baig MMFA, Aamir MN, Wang M, Gao X, Abbas M, Rehman MU (2022) Recent advances of magnetic gold hybrids and nanocomposites, and their potential biological applications. Magnetochemistry 8(4):38–56. https://doi.org/10.3390/magnetochemistry8040038

    Article  CAS  Google Scholar 

  67. Rehman ZU, Nawaz M, Ullah H, Uddin I, Shad S, Eldin E, Alshgari RA, Bahajjaj AAA, Arifeen WU, Javed MS (2023) Synthesis and characterization of ni nanoparticles via the microemulsion technique and its applications for energy storage devices. Materials 16(1):325–336. https://doi.org/10.3390/ma16010325

    Article  CAS  Google Scholar 

  68. Salwa AA, Karima MZ, Ezzat MS (2020) Facile synthesis of silica coated magnetic nanoparticles via green microwave-solventless technique for purification of water from toxic heavy metals. Int J Nanoparticles Nanotechnol 6(1):36–52. https://doi.org/10.35840/2631-5084/5536

    Article  Google Scholar 

  69. Elizondo-Villarreal N, Verástegui-Domínguez L, Rodríguez-Batista R, Gándara-Martínez E, Alcorta-García A, Martínez-Delgado D, Rodríguez-Castellanos EA, Vázquez-Rodríguez F, Gómez-Rodríguez C (2022) Green synthesis of magnetic nanoparticles of iron oxide using aqueous extracts of lemon peel waste and its application in anti-corrosive coatings. Materials 15(23):8328–8350. https://doi.org/10.3390/ma15238328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Khan S, Wong A, Rychlik M, Sotomayor MD (2022) A novel synthesis of a magnetic porous imprinted polymer by polyol method coupled with electrochemical biomimetic sensor for the detection of folate in food samples. Chemosensors. 10(11):473–489. https://doi.org/10.3390/chemosensors10110473

    Article  CAS  Google Scholar 

  71. Saddique A, Ahmad Z, Hoskins C, Mirza MA, Naz A, Ahmad J (2020) Hierarchical synthesis of iron oxide nanoparticles by polyol cum calcination method and determination of its optical and magnetic behavior. Mater Chem Phys 249:122950–122960. https://doi.org/10.1016/j.matchemphys.2020.122950

    Article  CAS  Google Scholar 

  72. Storozhuk L, Besenhard MO, Mourdikoudis S, LaGrow AP, Lees MR, Tung LD, Gavriilidis A, Thanh NTK (2021) Stable iron oxide nanoflowers with exceptional magnetic heating efficiency: simple and fast polyol synthesis. ACS Appl Mater Interfaces 13:45870–45880. https://doi.org/10.1021/acsami.1c12323

    Article  CAS  PubMed  Google Scholar 

  73. Iacovita C, Fizeșan I, Pop A, Scorus L, Dudric R, Stiufiuc G, Vedeanu N, Tetean R, Loghin F, Stiufiuc R, Lucaciu CM (2020) In vitro intracellular hyperthermia of iron oxide magnetic nanoparticles, synthesized at high temperature by a polyol process. Pharmaceutics 12(5):424–449. https://doi.org/10.3390/pharmaceutics12050424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Parang Z, Moghadamnia D (2019) Synthesis of silver nano-particles by electrochemical method and the effects on the serum levels of thyroid hormones (T3, T4) in adult male rats. Iran J Toxicol 13(4):21–25

    Article  CAS  Google Scholar 

  75. Shang X, Tu H, Zhang J, Ni B, Wang L, Wang M, Wu C, Zhao Z (2021) High coercivity Pr2Fe14B magnetic nanoparticles by a mechanochemical method. RSC Adv 11:12315–12320. https://doi.org/10.1039/D1RA01846A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chaudhary V, Zhong Y, Parmar H, Sharma V, Tan X, Ramanujan RV (2018) Mechanochemical synthesis of iron and cobalt magnetic metal nanoparticles and iron/calcium oxide and cobalt/calcium oxide nanocomposites. ChemistryOpen 7:590–598. https://doi.org/10.1002/open.201800091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsuzuki T (2021) Mechanochemical synthesis of metal oxide nanoparticles. Commun Chem 4(1):143–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rehman AU, Atif M, Baqi S, Ul-Hamid A, ur Rehman U, Khalid W, Ali Z, Ling FC-C, Nadeem M (2023) Enhancement in the electromagnetic shielding properties of doped M0.01Fe2.99O4 magnetite nanoparticles (M=Mn2+, Ni2+, Cu2+, Zn2+). J Alloys Compd 960:171051–171062. https://doi.org/10.1016/j.jallcom.2023.171051

    Article  CAS  Google Scholar 

  79. Rashid IA, Hamza A, Asim S, Zubair K, Shakir HMF, Afzal A, Zubair Z (2023) Achieving enhanced electromagnetic shielding by novel flexible rubber based nanocomposite with the incorporation of nickel spinal ferrites and polyaniline. Synth Met 295:117339–117347. https://doi.org/10.1016/j.synthmet.2023.117339

    Article  CAS  Google Scholar 

  80. Rehman AU, Atif M, ur Rehman U, Wahab H, Ling FC, Khalid W, Ul-Hamid A, Ali Z, Nadeem M (2023) Tuning the magnetic and dielectric properties of Fe3O4 nanoparticles for EMI shielding applications by doping a small amount of Ni2+/Zn2+. Mater Today Commun 34:105454–1055464. https://doi.org/10.1016/j.mtcomm.2023.105454

    Article  CAS  Google Scholar 

  81. Shakir MF, Tariq A, Rehan ZA, Nawab Y, Abdul Rashid I, Afzal A, Hamid U, Raza F, Zubair K, Rizwan MS, Riaz S, Sultan A, Muttaqi M (2020) Effect of nickel-spinal-ferrites on EMI shielding properties of polystyrene/polyaniline blend. SN Appl Sci 2:706–718. https://doi.org/10.1007/s42452-020-2535-4

    Article  CAS  Google Scholar 

  82. Gholampoor M, Movassagh-Alanagh F, Salimkhani H (2017) Fabrication of nano-Fe3O4 3D structure on carbon fibers as a microwave absorber and EMI shielding composite by modified EPD method. Solid State Sci 64:51–61. https://doi.org/10.1016/j.solidstatesciences.2016.12.005

    Article  CAS  Google Scholar 

  83. Srinivas C, Naga Praveen K, Ranjith Kumar E, Chandrasekhar Rao TV, Prajapat CL, Meena SS, Bhatt P, Arun B, James Raju KC, Sastry DL (2022) Shielding performance of MnxNi0.8–xZn02Fe2O4 (0.1≤x≤0.7) for electromagnetic interference (EMI) in X-band frequency. Ceram Int 48:9987–9997. https://doi.org/10.1016/j.ceramint.2021.12.205

    Article  CAS  Google Scholar 

  84. Batoo KM, Hadi M, Verma R, Chauhan A, Kumar R, Singh M, Aldossary OM (2022) Improved microwave absorption and EMI shielding properties of Ba-doped Co–Zn ferrite. Ceram Int 48:3328–3343. https://doi.org/10.1016/j.ceramint.2021.10.108

    Article  CAS  Google Scholar 

  85. Kumar S, Verma V, Walia R (2021) Magnetization and thickness dependent microwave attenuation behaviour of ferrite-PANI composites and embedded composite-fabrics prepared by in situ polymerization. AIP Adv 11(1):015106–015112. https://doi.org/10.1063/9.0000022

    Article  CAS  Google Scholar 

  86. Iqbal S, Khatoon H, Kotnala RK, Ahmad S (2020) Bi-doped barium ferrite decorated polythiophene nanocomposite: influence of Bi-doping on structure, morphology, thermal and EMI shielding behavior for X-band. J Mater Sci 55:15894–15907. https://doi.org/10.1007/s10853-020-05134-z

    Article  CAS  Google Scholar 

  87. Abhilash GP, Sharma D, Bose S, Shivakumara C (2023) Synthesis of rGO-Fe3O4 and La4BaCu5O13.10 and their polymer composites for electromagnetic interference shielding applications. Diam Relat Mater 138:110219–110233. https://doi.org/10.1016/j.diamond.2023.110219

    Article  CAS  Google Scholar 

  88. Wu Z, Yao Y, Su Q, Lv X, Shu Q (2023) NiFe-doped CoP network-structured nanocomposites for efficient electromagnetic interference shielding. J Alloys Compd 940:168848–168856. https://doi.org/10.1016/j.jallcom.2023.168848

    Article  CAS  Google Scholar 

  89. Prasad J, Singh AK, Haldar KK, Tomar M, Gupta V, Singh K (2019) CoFe2O4 nanoparticles decorated MoS2-reduced graphene oxide nanocomposite for improved microwave absorption and shielding performance. RSC Adv 9:21881–21892. https://doi.org/10.1039/C9RA03465J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Manjappa P, Rajan HK, Mahesh MG, Sadananda KG, Channegowda M, Kumar Shivashankar G, Mutt NB (2022) Effective attenuation of electromagnetic waves by synergetic effect of α-Fe2O3 and MWCNT/graphene in LDPE-based composites for EMI applications. Materials 15(24):9006–9025. https://doi.org/10.3390/ma15249006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Anju YRS, Pötschke P, Pionteck J, Krause B, Kuřitka I, Vilcakova J, Skoda D, Urbánek P, Machovsky M, Masař M, Urbánek M, Jurca M, Kalina L, Havlica J (2021) High-performance, lightweight, and flexible thermoplastic polyurethane nanocomposites with Zn2+-substituted CoFe2O4NANOPARTICLES and reduced graphene oxide as shielding materials against electromagnetic pollution. ACS Omega 6:28098–28118. https://doi.org/10.1021/acsomega.1c04192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rosdi N, Azis RS, Ismail I, Mokhtar N, Muhammad Zulkimi MM, Mustaffa MS (2021) Structural, microstructural, magnetic and electromagnetic absorption properties of spiraled multiwalled carbon nanotubes/barium hexaferrite (MWCNTs/BaFe12O19) hybrid. Sci Rep 11:15982–15996. https://doi.org/10.1038/s41598-021-95332-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hasan IH, Hamidon MN,Ismail A, Ismail I, Mekki AS, Mohd Kusaimi MA, Azhari S, Osman R (2018) Yig thick film as substrate overlay for bandwidth enhancement of microstrip patch antenna. In: IEEE Access 6:32601–32611. https://doi.org/10.1109/ACCESS.2018.2842749

  94. Zulkimi MMM, Azis RS, Ismail I, Mokhtar N, Ertugrul M, Hamidon MN, Hasan IH, Yesilbag YO, Tuzluca FN, Ozturk G, Hasar UC (2023) Enhancing radar absorption performance of Sr-hexaferrite by hybridization with coiled carbon nanotubes via chemical vapour deposition method. Diam Relat Mater 137:110118–110132. https://doi.org/10.1016/j.diamond.2023.110118

    Article  CAS  Google Scholar 

  95. Mustaffa MS, Azis RS, Abdullah NH, Ismail I, Ibrahim IR (2019) An investigation of microstructural, magnetic and microwave absorption properties of multi-walled carbon nanotubes/Ni0.5Zn0.5Fe2O4. Sci Rep 9:15523–15530. https://doi.org/10.1038/s41598-019-52233-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Men Q, Wang S, Yan Z, Zhao B, Guan L, Chen G, Guo X, Zhang R, Che R (2022) Iron-encapsulated CNTs on carbon fiber with high-performance EMI shielding and electrocatalytic activity. Adv Compos Hybrid Mater 5:2429–2439. https://doi.org/10.1007/s42114-022-00457-8

    Article  CAS  Google Scholar 

  97. Xie Y, Liu S, Huang K, Chen B, Shi P, Chen Z, Liu B, Liu K, Wu Z, Chen K, Qi Y, Liu Z (2022) Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv Mater 34:2202982–2202993. https://doi.org/10.1002/adma.202202982

    Article  CAS  Google Scholar 

  98. Chao Z, Yu Y, Lei F, Hu D (2021) A lightweight and flexible CNT/Fe3O4 composite with high electromagnetic interference shielding performance. Carbon Lett 31:93–97. https://doi.org/10.1007/s42823-020-00152-y

    Article  Google Scholar 

  99. Xiao W, Zhang L, Zhang S, Yan J, Zhang G, Gao J (2023) Electrically conductive and magnetic nanofiber composites with an asymmetric structure for efficient electromagnetic interference shielding. Colloids Surf A Physicochem Eng Asp 675:132063–132073. https://doi.org/10.1016/j.colsurfa.2023.132063

    Article  CAS  Google Scholar 

  100. Zheng Q, Wang J, Yu M, Cao W-Q, Zhai H, Cao M-S (2023) Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon N Y 210:118049–118060. https://doi.org/10.1016/j.carbon.2023.118049

    Article  CAS  Google Scholar 

  101. Zhang N, Zhao R, He D, Ma Y, Qiu J, Jin C, Wang C (2019) Lightweight and flexible Ni–Co alloy nanoparticle-coated electrospun polymer nanofiber hybrid membranes for high-performance electromagnetic interference shielding. J Alloys Compd 784:244–255. https://doi.org/10.1016/j.jallcom.2018.12.341

    Article  CAS  Google Scholar 

  102. Zhong Y, Guo Y, Li M, Wei X, Wang J (2022) A hollow hybrid separated structure based on Ni/Pani-Fe3O4 constructed for an ultra-efficient electromagnetic interference shielding and hydrophobic PPTA fabric. J Alloys Compd 925:166666–166677. https://doi.org/10.1016/j.jallcom.2022.166666

    Article  CAS  Google Scholar 

  103. Hai W, Chen C, Yu Q, Li M, Jiang Z, Shao H, Shao G, Jiang J, Chen N, Bi S (2023) Sandwich structure electromagnetic interference shielding composites based on Fe3O4 nanoparticles/PANI/laser-induced graphene with near-zero electromagnetic waves transmission. Appl Surf Sci 637:157975–157984. https://doi.org/10.1016/j.apsusc.2023.157975

    Article  CAS  Google Scholar 

  104. Movassagh-Alanagh F, Bordbar-Khiabani A, Ahangari-Asl A (2017) Three-phase PANI@nano-Fe3O4@CFs heterostructure: fabrication, characterization and investigation of microwave absorption and EMI shielding of PANI@nano-Fe3O4@CFs/epoxy hybrid composite. Compos Sci Technol 150:65–78. https://doi.org/10.1016/j.compscitech.2017.07.010

    Article  CAS  Google Scholar 

  105. Fionov A, Kraev I, Yurkov G, Solodilov V, Zhukov A, Surgay A, Kuznetsova I, Kolesov V (2022) Radio-absorbing materials based on polymer composites and their application to solving the problems of electromagnetic compatibility. Polymers (Basel) 14(15):3026–3085. https://doi.org/10.3390/polym14153026

    Article  CAS  PubMed  Google Scholar 

  106. Biruk Ya (2022) Designing finishing materials with a gradient of electrophysical properties. In Environmental safety and nature management 43(3):73–80. https://doi.org/10.32347/2411-4049.2022.3.73-80

    Article  Google Scholar 

  107. Sushmita K, Madras G, Bose S (2020) Polymer nanocomposites containing semiconductors as advanced materials for EMI shielding. ACS Omega 5:4705–4718. https://doi.org/10.1021/acsomega.9b03641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang Y, Chen M, Xie A, Wang Y, Xu X (2021) Recent advances in design and fabrication of nanocomposites for electromagnetic wave shielding and absorbing. Materials 13(4):712–735. https://doi.org/10.3390/ma14154148

    Article  CAS  Google Scholar 

  109. Hwang U, Kim J, Seol M, Lee B, Park I-K, Suhr J, Nam J-D (2022) Quantitative interpretation of electromagnetic interference shielding efficiency: is it really a wave absorber or a reflector? ACS Omega 7:4135–4139. https://doi.org/10.1021/acsomega.1c05657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ouyang W, Liu Q, Ding C, Wu Z (2023) Broadband microwave absorption effects in 2D nitrogen capacitively coupled plasma under different operating conditions. Phys Plasmas 30:043501–043512. https://doi.org/10.1063/5.0128430

    Article  CAS  Google Scholar 

  111. Belyaev V, Zverev N, Abduev A, Zotov A (2023) E-wave interaction with the one-dimensional photonic crystal with weak conductive and transparent materials. Coatings 13(4):712–722. https://doi.org/10.3390/coatings13040712

    Article  CAS  Google Scholar 

  112. Kokodii MG, Natarova AO, Genzarovskiy AV, Priz IA (2023) Interaction between thin conductive fibers and microwave radiation. Opt Quantum Electron 55:256–266. https://doi.org/10.1007/s11082-022-04389-x

    Article  Google Scholar 

  113. Choquet C, Moumni M, Tilioua M (2018) Homogenization of the Landau–Lifshitz–Gilbert equation in a contrasted composite medium. Discrete Contin Dyn Syst—S 11:35–57. https://doi.org/10.3934/dcdss.2018003

    Article  Google Scholar 

  114. Aravinthan D, Sabareesan P, Daniel M (2017) Spin transfer torque magnetization switching in ferromagnetic nanopillars with orange peel coupling. IOSR J Appl Phys 01:01–05. https://doi.org/10.9790/4861-17002010105

    Article  Google Scholar 

  115. de Laire A (2022) Recent results for the Landau–Lifshitz equation. SeMA J 79:253–295. https://doi.org/10.1007/s40324-021-00254-1

    Article  Google Scholar 

  116. Chen L, Mankovsky S, Wimmer S, Schoen MAW, Körner HS, Kronseder M, Schuh D, Bougeard D, Ebert H, Weiss D, Back CH (2018) Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs(001). Nat Phys 14:490–494. https://doi.org/10.1038/s41567-018-0053-8

    Article  CAS  Google Scholar 

  117. Duan Y, Gao M, Pang H, Wang T (2021) FeCoNiMnAl high-entropy alloy: Improving electromagnetic wave absorption properties. J Mater Res 36:2107–2117. https://doi.org/10.1557/s43578-021-00242-1

    Article  CAS  Google Scholar 

  118. Liu J, Yu M-Y, Yu Z-Z, Nicolosi V (2023) Design and advanced manufacturing of electromagnetic interference shielding materials. Mater Today 66:245–272. https://doi.org/10.1016/j.mattod.2023.03.022

    Article  Google Scholar 

  119. Xia X, Weng GJ (2021) Dual percolations of electrical conductivity and electromagnetic interference shielding in progressively agglomerated CNT/polymer nanocomposites. Math Mech Solids 26:1120–1137. https://doi.org/10.1177/10812865211021460

    Article  Google Scholar 

  120. Oraby H, Tantawy HR, Correa-Duarte MA, Darwish M, Elsaidy A, Naeem I, Senna MH (2022) Tuning electro-magnetic interference shielding efficiency of customized polyurethane composite foams taking advantage of rGO/Fe3O4 hybrid nanocomposites. Nanomaterials 12(16):2805–2827. https://doi.org/10.3390/nano12162805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kausar A, Ahmad I (2023) Conducting polymer nanocomposites for electromagnetic interference shielding—radical developments. J Compos Sci 7(6):240–260. https://doi.org/10.3390/jcs7060240

    Article  CAS  Google Scholar 

  122. Bleija M, Platnieks O, Macutkevič J, Banys J, Starkova O, Grase L, Gaidukovs S (2023) Poly(Butylene Succinate) hybrid multi-walled carbon nanotube/iron oxide nanocomposites: electromagnetic shielding and thermal properties. Polymers (Basel) 15(3):515–534. https://doi.org/10.3390/polym15030515

    Article  CAS  PubMed  Google Scholar 

  123. Nallabothula H, Bhattacharjee Y, Samantara L, Bose S (2019) Processing-mediated different states of dispersion of multiwalled carbon nanotubes in PDMS Nanocomposites influence EMI shielding performance. ACS Omega 4:1781–1790. https://doi.org/10.1021/acsomega.8b02920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lin S, Wang H, Wu F, Wang Q, Bai X, Zu D, Song J, Wang D, Liu Z, Li Z, Tao N, Huang K, Lei M, Li B, Wu H (2019) Room-temperature production of silver-nanofiber film for large-area, transparent and flexible surface electromagnetic interference shielding. NPJ Flex Electron 3:6–14. https://doi.org/10.1038/s41528-019-0050-8

    Article  CAS  Google Scholar 

  125. Dong L, Chen Z, Zhao X, Ma J, Lin S, Li M, Bao Y, Chu L, Leng K, Lu H, Loh KP (2018) A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water. Nat Commun 9:76–84. https://doi.org/10.1038/s41467-017-02580-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Qi Q, Ma L, Zhao B, Wang S, Liu X, Lei Y, Park CB (2020) An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl Mater Interfaces 12:36568–36577. https://doi.org/10.1021/acsami.0c10600

    Article  CAS  PubMed  Google Scholar 

  127. Ma J, Ma T, Cheng J, Zhang J (2022) Polymer encapsulation strategy toward 3d printable, sustainable, and reliable form-stable phase change materials for advanced thermal energy storage. ACS Appl Mater Interfaces 14:4251–4264. https://doi.org/10.1021/acsami.1c23972

    Article  CAS  PubMed  Google Scholar 

  128. Wang X-X, Zheng Q, Zheng Y-J, Cao M-S (2023) Green EMI shielding: dielectric/magnetic “genes” and design philosophy. Carbon N Y 206:124–141. https://doi.org/10.1016/j.carbon.2023.02.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Universiti Putra Malaysia (UPM), Malaysia for their financial assistance with this project through Geran Putra Berimpak (Vot 9689000).

Author information

Authors and Affiliations

Authors

Contributions

II and RSA have made significant contributions to the conception, experimental design, carrying out measurements, and manuscript composition. II was responsible for the initial conception of the research project, while II provided additional insight and expertise in experimental design. Both authors were actively involved in carrying out measurements and data analysis. II contributed to the manuscript's composition by drafting the initial version and providing critical revisions. RSA also provided significant input into the writing and revising process, contributing to the manuscript's overall quality.

Corresponding author

Correspondence to Ismayadi Ismail.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We confirm that the manuscript adheres to the ethical standards of academic research. The research presented in this manuscript is original work that has not been previously published, and it is not currently being considered for publication elsewhere. The authors have conducted the research and analysis in a truthful and complete manner, and all significant contributions of co-authors and co-researchers have been properly credited. The results have been placed in the appropriate context of prior and existing research, and all sources used have been properly disclosed through correct citation. The authors of this manuscript have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content. The authors recognize the importance of research ethics and have followed the ethical guidelines to ensure that the research is conducted with the highest level of integrity and accountability. Therefore, the authors affirm that this manuscript meets the ethical standards required for academic research.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, I., Azis, R.S. A review of magnetic nanocomposites for EMI shielding: synthesis, properties, and mechanisms. J Mater Sci 59, 5293–5329 (2024). https://doi.org/10.1007/s10853-024-09527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09527-2

Navigation