Skip to main content
Log in

Recent progress on manganese dioxide based supercapacitors

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The increasing worldwide interest in MnO2 for supercapacitor applications is based on anticipation that MnO2-based high-voltage aqueous supercapacitors will ultimately serve as a safe and low-cost alternative to state-of-the-art commercial organic-based electrochemical double-layer capacitors or RuO2-based acid systems. In this paper, the physicochemical features, synthesis methods, and charge storage mechanism of MnO2 as well as the current status of MnO2-based supercapacitors are summarized and discussed in detail. The future opportunities and challenges related to MnO2-based supercapacitors have also been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.E. Conway: Electrochemical Supercapacitor: Scientific Fundamentals and Technological Applications(Kluwer Academic/Plenum Publishers, New York 1999)

    Book  Google Scholar 

  2. A. Burke: Ultracapacitors: Why, how, and where is the technology. J. Power Sources9137 (2000)

    Article  CAS  Google Scholar 

  3. S. Yoda, K. Lshihara: The advent of battery-based societies and the global environment in the 21st century. J. Power Sources683 (1997)

    Article  CAS  Google Scholar 

  4. H. Becker: An electrochemical capacitor. U.S. Patent No. 2800616[P] (1957)

    Google Scholar 

  5. A. Yoshino, T. Tsubata, M. Shimoyamada, H. Satake, Y. Okano, S. Mori, S. Yata: Development of a lithium-type advanced energy storage device. J. Electrochem. Soc.151, (12) A2180 (2004)

    Article  CAS  Google Scholar 

  6. J.P. Zheng: Ruthenium oxide-carbon composite electrodes for electrochemical capacitors. Electrochem. Solid-State Lett.2359 (1999)

    Article  CAS  Google Scholar 

  7. J.P. Zheng, P.J. Cygan, T.R. Jow: Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc.1422699 (1995)

    Article  CAS  Google Scholar 

  8. H.Y. Lee, J.B. Goodenough: Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution. J. Solid State Chem.14881 (1999)

    Article  CAS  Google Scholar 

  9. H.Y. Lee, J.B. Goodenough: Supercapacitor behavior with KCl electrolyte. J. Solid State Chem.144220 (1999)

    Article  CAS  Google Scholar 

  10. M.S. Hong, S.H. Lee, S.W. Kim: Use of KCl aqueous electrolyte for 2 V manganese oxide/activated carbon hybrid capacitor. Electrochem. Solid-State Lett.5A227 (2002)

    Article  CAS  Google Scholar 

  11. D. Bélanger, T. Brousse, W.L. Jeffrey: Manganese dioxides: Battery materials make the leap to electrochemical capacitors. Electrochem. Soc. Interface(2008)

    Google Scholar 

  12. C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: The capacitive behavior and charge storage mechanism of manganese dioxide in aqueous mild solution containing bivalent cations. J. Electrochem. Soc.156, (1) A73 (2009)

    Article  CAS  Google Scholar 

  13. J.O. Besenhard Handbook of Battery Materials(Wiley-VCH 1999)

    Google Scholar 

  14. M. Toupin, T. Brousse, D. Bélanger: Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater.143946 (2002)

    Article  CAS  Google Scholar 

  15. T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, D. Bélanger: Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc.153, (12) A2171 (2006)

    Article  CAS  Google Scholar 

  16. B.J. Aronson, A.K. Kinser, S. Passerini, W.H. Smyrl, A. Stein: Synthesis, characterization, and electrochemical properties of magnesium birnessite and zinc chalcophanite prepared by a low-temperature route. Chem. Mater.11949 (1999)

    Article  CAS  Google Scholar 

  17. C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method. J. Power Sources180664 (2008)

    Article  CAS  Google Scholar 

  18. S. Devaraj, N. Munichandraiah: Electrochemical supercapacitor studies of nanostructured α-MnO2 synthesized by microemulsion method and the effect of annealing. J. Electrochem. Soc.154, (2) A80 (2007)

    Article  CAS  Google Scholar 

  19. Y.U. Jeong, A. Manthiram: Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes. J. Electrochem. Soc.149A1419 (2002)

    Article  CAS  Google Scholar 

  20. S. Chen, J.W. Zhu, Q.F. Han, Z.J. Zheng, Y. Yang, X. Wang: Shape-controlled synthesis of one-dimensional MnO2 via a facile quick-precipitation procedure and its electrochemical properties. Cryst. Growth Des.94357 (2009)

    Google Scholar 

  21. R.R. Jiang, T. Huang, J.L. Liu, J.H. Zhuang, A.S. Yu: A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode. Electrochim. Acta543047 (2009)

    Article  CAS  Google Scholar 

  22. E. Beaudrouet, A.L.G. La Salle, D. Guyomard: Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochim. Acta541240 (2009)

    Article  CAS  Google Scholar 

  23. J-Y. Luo, X-L. Li, Y-Y. Xia: Synthesis of highly crystalline spinel LiMn2O4 by a soft chemical route and its electrochemical performance. Electrochim. Acta524525 (2007)

    Article  CAS  Google Scholar 

  24. J.P. Ni, W.C. Lu, L.M. Zhang, B.H. Yue, X.F. Shang, Y. Lv: Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J. Phys. Chem. C11354 (2009)

    Article  CAS  Google Scholar 

  25. P. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S-J. Hwang, J-H. Choy, N. Munichandraiah: Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor. J. Phys. Chem. C1136360 (2009)

    Article  CAS  Google Scholar 

  26. Q.T. Qu, P. Zhang, B. Wang, Y.H. Chen, S. Tian, Y.P. Wu, R. Holze: Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C11314020 (2009)

    Article  CAS  Google Scholar 

  27. M. Ghaemi, F. Ataherian, A. Zolfaghari, S.M. Jafari: Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode effects of physisorbed water and proton conduction. Electrochim. Acta534607 (2008)

    Article  CAS  Google Scholar 

  28. A. Zolfaghari, F. Ataherian, M. Ghaemi, A. Gholami: Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method. Electrochim. Acta522904 (2007)

    Article  CAS  Google Scholar 

  29. R.N. Reddy, R.G. Reddy: Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material. J. Power Sources124330 (2003)

    Article  CAS  Google Scholar 

  30. J.W. Long, K.E. Swider-Lyons, R.M. Stroud, D.R. Rolison: Design of pore and matter architectures in manganese oxide charge-storage materials. Electrochem. Solid-State Lett.3453 (2000)

    Article  CAS  Google Scholar 

  31. S. Franger, S. Bach, J. Farcy, J.P. Pereira-Ramos, N. Baffier: Synthesis, structural and electrochemical characterizations of the sol-gel birnessite MnO1.84·0.6H2O. J. Power Sources109262 (2002)

    Article  CAS  Google Scholar 

  32. V. Subramanian, H.W. Zhu, B.Q. Wei: Nanostructured MnO2 hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J. Power Sources159361 (2006)

    Article  CAS  Google Scholar 

  33. V. Subramanian, H. Zhu, R. Vajtai, P.M. Ajayan, B. Wei: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem.109, (43) 20207 (2005)

    Article  CAS  Google Scholar 

  34. X.H. Tang, Z-H. Liu, C.X. Zhang, Z. Yang, Z.L. Wang: Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area. J. Power Sources193939 (2009)

    Article  CAS  Google Scholar 

  35. N. Wang, H.T. Pang, H.R. Peng, G.C. Li, X.G. Chen: Hydrothermal synthesis and electrochemical properties of MnO2 nanostructures. Cryst. Res. Technol.441230 (2009)

    Article  CAS  Google Scholar 

  36. N.A. Tang, X.K. Tian, C. Yang, Z.B. Pi: Facile synthesis of α-MnO2 nanostructures for supercapacitors. Mater. Res. Bull.442062 (2009)

    Article  CAS  Google Scholar 

  37. N. Sui, Y. Duan, X. Jiao, D. Chen: Large-scale preparation and catalytic properties of one-dimensional α/β-MnO2 nanostructures. J. Phys. Chem. C1138560 (2009)

    Article  CAS  Google Scholar 

  38. C.C. Yu, L.X. Zhang, J.L. Shi, J.J. Zhao, J.H. Gao, D.S. Yan: A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore-size distribution, and their electrochemical properties. Adv. Funct. Mater.181544 (2008)

    Article  CAS  Google Scholar 

  39. J. Rajeswari, P.S. Kishore, B. Viswanathan, T.K. Varadarajan: One-dimensional MoO2 nanorods for supercapacitor applications. Electrochem. Commun.11572 (2009)

    Article  CAS  Google Scholar 

  40. S.W. Donne, A.F. Hollenkamp, B.C. Jones: Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate. J. Power Sources195367 (2010)

    Article  CAS  Google Scholar 

  41. A.B. Yuan, M.L. Wang, Y.Q. Wang, J. Hu: Textural and capacitive characteristics of MnO2 nanocrystals derived from a novel solid-reaction route. Electrochim. Acta541021 (2009)

    Article  CAS  Google Scholar 

  42. P. Yu, X. Zhang, Y. Chen, Y.W. Ma, Z.P. Qi: Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Mater. Chem. Phys.118303 (2009)

    Article  CAS  Google Scholar 

  43. S. Devaraj, N. Munichandraiah: The effect of nonionic surfactant triton X-100 during electrochemical deposition of MnO2 on its capacitance properties. J. Electrochem. Soc.154A901 (2007)

    Article  CAS  Google Scholar 

  44. N. Nagarajan, H. Humadi, I. Zhitomirsky: Cathodic electrodeposition of MnOx films for electrochemical supercapacitors. Electrochim. Acta513039 (2006)

    Article  CAS  Google Scholar 

  45. T. Xue, C-L. Xu, D-D. Zhao, X-H. Li, H-L. Li: Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates. J. Power Sources164953 (2007)

    Article  CAS  Google Scholar 

  46. C-C. Hu, T-W. Tsou: Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem. Commun.4105 (2002)

    Article  CAS  Google Scholar 

  47. C-C. Hu, C-C. Wang: Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. J. Electrochem. Soc.150A1079 (2003)

    Article  CAS  Google Scholar 

  48. J.N. Broughton, M.J. Brett: Variations in MnO2 electrodeposition for electrochemical capacitors. Electrochim. Acta504814 (2005)

    Article  CAS  Google Scholar 

  49. K.R. Prasad, N. Miura: Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors. J. Power Sources135354 (2004)

    Article  CAS  Google Scholar 

  50. J. Wei, N. Nagarajan, I. Zhitomirsky: Manganese oxide films for electrochemical supercapacitors. J. Mater. Process. Technol.186356 (2007)

    Article  CAS  Google Scholar 

  51. Y-T. Wu, C-C. Hu: Effects of electrochemical activation and characteristics of thick MnO2 deposits. J. Electrochem. Soc.151A2060 (2004)

    Article  CAS  Google Scholar 

  52. C.Y. Lee, H.M. Tsai, H.J. Chuang, S.Y. Li, P. Lin, T.Y. Tseng: Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. J. Electrochem. Soc.152A716 (2005)

    Article  CAS  Google Scholar 

  53. S-C. Pang, M.A. Anderson, T.W. Chapman: Novel electrode materials for thin-film ultracapacitor: Comparison of electrode properties of sol-gel-derived and electrodeposited manganese dioxide. J. Electrochem. Soc.147444 (2000)

    Article  CAS  Google Scholar 

  54. M. Toupin, T. Brousse, D. Bélanger: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater.163184 (2004)

    Article  CAS  Google Scholar 

  55. W. Xiao, H. Xia, J.Y.H. Fuh, L. Lu: Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources193935 (2009)

    Article  CAS  Google Scholar 

  56. X.H. Tang, Z-H. Liu, C.X. Zhang, Z.P. Yang, Z.L. Wang: Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area. J. Power Sources193939 (2009)

    Article  CAS  Google Scholar 

  57. J.Q. Yuan, Z-H. Liu, S.F. Qiao, X.R. Ma, N.C. Xu: Fabrication of MnO2-pillared layered manganese oxide through an exfoliation-reassembling and oxidation process. J. Power Sources1891278 (2009)

    Article  CAS  Google Scholar 

  58. Y. Omomo, T. Sasaki, L.Z. Wang, M. Watanabe: Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. J. Am. Chem. Soc.1253568 (2003)

    Article  CAS  Google Scholar 

  59. Y. Kadoma, Y. Uchimoto, M. Wakihara: Synthesis and structural study on MnO2 nanosheet material by x-ray absorption spectroscopic technique. J. Phys. Chem. B110174 (2006)

    Article  CAS  Google Scholar 

  60. J. Yan, T. Wei, J. Cheng, Z.J. Fan, M.L. Zhang: Preparation and electrochemical properties of lamellar MnO2 for supercapacitors. Mater. Res. Bull.45210 (2010)

    Article  CAS  Google Scholar 

  61. B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor: Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev.104, (9) 3893 (2004)

    Article  CAS  Google Scholar 

  62. P.A. Winsor: Binary and multicomponent solutions of amphiphilic compounds. Solubilization and the formation, structure, and theoretical significance of liquid crystalline solutions. Chem. Rev.681 (1968)

    Article  CAS  Google Scholar 

  63. W. Zhang, X. Qiao, J. Chen: Synthesis of silver nanoparticles: Effects of concerned parameters in water/oil microemulsion. Mater. Sci. Eng., B1421 (2007)

    Article  CAS  Google Scholar 

  64. V. Subramanian, H.W. Zhu, B.Q. Wei: Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials. Electrochem. Commun.8827 (2004)

    Article  CAS  Google Scholar 

  65. X.P. Dong, W.H. Shen, J.L. Gu, L.M. Xiong, Y.F. Zhu, H. Li, J.L. Shi: MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J. Phys. Chem. B1106015 (2006)

    Article  CAS  Google Scholar 

  66. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett.7281 (2007)

    Article  CAS  Google Scholar 

  67. J. Yan, Z.J. Fan, T. Wei, W. Qian, M. Zhang, F. Wei: Preparation of exfoliated graphite containing manganese oxides with high electrochemical capacitance by microwave irradiation. Carbon47, (14) 3371 (2009)

    Article  CAS  Google Scholar 

  68. D.S. Su, R. Schlögl: Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem3, (2) 136 (2010)

    Article  CAS  Google Scholar 

  69. A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan: Multisegmented Au-MnO2-carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. J. Phys. Chem. C(2010) doi: 10.1021/jp908739q

    Google Scholar 

  70. H. Kim, B.N. Popov: Synthesis and characterization of MnO2-based mixed oxides as supercapacitors. J. Electrochem. Soc.150D56 (2003)

    Article  CAS  Google Scholar 

  71. Y-S. Chen, C-C. Hu: Capacitive characteristics of binary manganese-nickel oxides prepared by anodic deposition. Electrochem. Solid-State Lett.6A210 (2003)

    Article  CAS  Google Scholar 

  72. K.R. Prasad, N. Miura: Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem. Commun.61004 (2004)

    Article  CAS  Google Scholar 

  73. E. Machefaux, T. Brousse, D. Belanger, D. Guyomard: Supercapacitor behavior of new substituted manganese dioxides. J. Power Sources165651 (2007)

    Article  CAS  Google Scholar 

  74. M-T. Lee, J-K. Chang, Y-T. Hsieh, W-T. Tsai: Annealed Mn-Fe binary oxides for supercapacitor applications. J. Power Sources1851550 (2008)

    Article  CAS  Google Scholar 

  75. S. Trasatti: Physical electrochemistry of ceramic oxides. Electrochim. Acta36225 (1991)

    Article  CAS  Google Scholar 

  76. Y. Kadoma, S. Oshitari, K. Ui, N. Kumagai: Synthesis of hollandite-type LixMnO2 by Li+ ion-exchange in molten salt and lithium insertion characteristics. Electrochim. Acta531697 (2007)

    Article  CAS  Google Scholar 

  77. C.S. Johnson: Development and utility of manganese oxides as cathodes in lithium batteries. J. Power Sources165559 (2007)

    Article  CAS  Google Scholar 

  78. S. Wen, J-W. Lee, I-H. Yeo, J. Park, S-I. Mho: The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2. Electrochim. Acta50849 (2004)

    Article  CAS  Google Scholar 

  79. C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: Supercapacitive studies on amorphous MnO2 in mild solutions. J. Power Sources184691 (2008)

    Article  CAS  Google Scholar 

  80. S-L. Kuo, N-L. Wu: Investigation of pseudocapacitive charge-storage reaction of MnO2·nH2O supercapacitors in aqueous electrolytes. J. Electrochem. Soc.153A1317 (2006)

    Article  CAS  Google Scholar 

  81. L. Athouel, F. Moser, R. Dugas, O. Crosnier, D. Belanger, T. Brousse: Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte. J. Phys. Chem. C1127270 (2008)

    Article  CAS  Google Scholar 

  82. C-C. Hu, Y-T. Wu, K-H. Chang: Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals: Determinant influence of oxidants. Chem. Mater.202890 (2008)

    Article  CAS  Google Scholar 

  83. S. Devaraj, N. Munichandraiah: Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C1124406 (2008)

    Article  CAS  Google Scholar 

  84. O. Ghodbane, J-L. Pascal, F. Favier: Microstructural effects on charge-storage properties in MnO2-Based electrochemical supercapacitors. Appl. Mater. Inter.11130 (2009)

    Article  CAS  Google Scholar 

  85. J-K. Chang, M-T. Lee, W-T. Tsai, M-J. Deng, I-W. Sun: X-ray photoelectron spectroscopy and in situ x-ray absorption spectroscopy studies on reversible insertion-desertion of dicyanamide anions into-from manganese oxide in ionic liquid. Chem. Mater.212688 (2009)

    Article  CAS  Google Scholar 

  86. M-T. Lee, W-T. Tsai, M-J. Deng, H-F. Cheng, I-W. Sun, J-K. Chang: Pseudocapacitance of MnO2 originates from reversible insertion-desertion of thiocyanate anions studied using in situ x-ray absorption spectroscopy in ionic liquid electrolyte. J. Power Sources195919 (2010)

    Article  CAS  Google Scholar 

  87. C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: The reversible insertion properties of zinc ion into manganese dioxide and its application for energy storage. Electrochem. Solid-State Lett.12, (4) A61 (2009)

    Article  CAS  Google Scholar 

  88. C. Xu, B. Li, H. Du, F. Kang, Y. Zeng: Asymmetric activated carbon-manganese dioxide capacitors in mild aqueous electrolytes containing alkaline-earth cations. J. Electrochem. Soc.156A435 (2009)

    Article  CAS  Google Scholar 

  89. P. Simon, Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater.7845 (2008)

    Article  CAS  Google Scholar 

  90. K-W. Nam, M.G. Kim, K-B. Kim: In situ Mn K-edge x-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors. J. Phys. Chem. C111749 (2007)

    Article  CAS  Google Scholar 

  91. F. Béguin, V. Khomenko, E. Raymundo-Pinero: Optimization of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. J. Power Sources153183 (2006)

    Article  CAS  Google Scholar 

  92. T. Brousse, D. Belanger: A hybrid Fe3O4-MnO2 capacitor in mild aqueous electrolyte. Electrochem. Solid-State Lett.6A244 (2003)

    Article  CAS  Google Scholar 

  93. J-Y. Luo, J-L. Liu, P. He, Y-Y. Xia: A novel LiTi2(PO4)3/MnO2 hybrid supercapacitor in lithium sulfate aqueous electrolyte. Electrochim. Acta538182 (2008)

    Article  CAS  Google Scholar 

  94. V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Béguin: High voltage asymmetric supercapacitors operating in aqueous electrolyte. Appl. Phys. A - Mater.82567 (2006)

    Article  CAS  Google Scholar 

  95. Q.T. Qu, Y. Shi, S. Tian, Y.H. Chen, Y.P. Wu, R. Holze: A new cheap asymmetric aqueous supercapacitor activated carbon-NaMnO2. J. Power Sources1941222 (2009)

    Article  CAS  Google Scholar 

  96. Q.T. Qu, L. Li, S. Tian, W.L. Guo, Y.P. Wu, R. Holze: A cheap asymmetric supercapacitor with high energy at high power activated carbon-K0.27MnO2·0.6H2O. J. Power Sources1952789 (2010)

    Article  CAS  Google Scholar 

  97. Y.G. Wang, Y-Y. Xia: A new concept hybrid electrochemical surpercapacitor carbon LiMn2O4 aqueous system. Electrochem. Commun.71138 (2005)

    Article  CAS  Google Scholar 

  98. F. Moser, L. Athouël, O. Crosnier, F. Favier, D. Bélanger, T. Brousse: Transparent electrochemical capacitor based on electrodeposited MnO2 thin film electrodes and gel-type electrolyte. Electrochem. Commun.111259 (2009)

    Article  CAS  Google Scholar 

  99. T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet, Y. Scudeller, Y. Zhou, F. Favier, D. Bélanger, P. Simon: Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J. Power Sources173633 (2007)

    Article  CAS  Google Scholar 

  100. T. Brousse, M. Toupin, D. Bélanger: A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte. J. Electrochem. Soc.151A614 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiyu Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C., Kang, F., Li, B. et al. Recent progress on manganese dioxide based supercapacitors. Journal of Materials Research 25, 1421–1432 (2010). https://doi.org/10.1557/JMR.2010.0211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0211

Navigation