Skip to main content
Log in

High energy density lithium-ion batteries with carbon nanotube anodes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recent advancements using carbon nanotube electrodes show the ability for multifunctionality as a lithium-ion storage material and as an electrically conductive support for other high capacity materials like silicon or germanium. Experimental data show that replacement of conventional anode designs, which use graphite composites coated on copper foil, with a freestanding silicon-single-walled carbon nanotube (SWCNT) anode, can increase the usable anode capacity by up to 20 times. In this work, a series of calculations were performed to elucidate the relative improvement in battery energy density for such anodes paired with conventional LiCoO2, LiFePO4, and LiNiCoAlO2 cathodes. Results for theoretical flat plate prismatic batteries comprising freestanding silicon-SWCNT anodes with conventional cathodes show energy densities of 275 Wh/kg and 600 Wh/L to be theoretically achievable; this is a 50% improvement over today’s commercial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita: Recent development of carbon materials for Li ion batteries. Carbon38183 (2000)

    Article  CAS  Google Scholar 

  2. G.M. Ehrlich: Lithium-ion batteries Handbook of Batteries3rd edited by D. Linden and T.B. Reddy (McGraw-Hill, New York 2002) 35.1–35.94

    Google Scholar 

  3. W.F. Howard, R.M. Spotnitz: Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J. Power Sources165887 (2007)

    Article  CAS  Google Scholar 

  4. M.S. Whittingham: Lithium batteries and cathode materials. Chem. Rev.1044271 (2004)

    Article  CAS  Google Scholar 

  5. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle: Carbon nanotubes for lithium ion batteries. Energy Environ. Sci.2638 (2009)

    Article  CAS  Google Scholar 

  6. S. Hossain, Y. Saleh, R. Loutfy: Carbon-carbon composite as anodes for lithium-ion battery systems. J. Power Sources965 (2001)

    Article  CAS  Google Scholar 

  7. C.K. Chan, X.F. Zhang, Y. Cui: High capacity Li ion battery anodes using Ge nanowires. Nano Lett.8307 (2008)

    Article  CAS  Google Scholar 

  8. P. Meduri, C. Pendyala, V. Kumar, G.U. Sumanasekera, M.K. Sunkara: Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Lett.9612 (2009)

    Article  CAS  Google Scholar 

  9. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim.9, (1) 112 (1998)

    Article  Google Scholar 

  10. S.I. Lee, Y.S. Kim, H.S. Chun: Modeling on lithium insertion of porous carbon electrodes. Electrochim. Acta471055 (2002)

    Article  CAS  Google Scholar 

  11. B.J. Landi, M.J. Ganter, C.M. Schauerman, C.D. Cress, R.P. Raffaelle: Lithium ion capacity of single wall carbon nanotube paper electrodes. J. Phys. Chem. C1127509 (2008)

    Article  CAS  Google Scholar 

  12. K. Nechev 3rd Annual International Conference Lithium Mobile Power, San Diego, CA, 2007, (The Knowledge Foundation Press, San Diego, CA 2007)

    Google Scholar 

  13. B.J. Landi, R.A. DiLeo, C.M. Schauerman, C.D. Cress, M.J. Ganter, R.P. Raffaelle: Multi-walled carbon nanotube paper anodes for lithium ion batteries. J. Nanosci. Nanotechnol.93406 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Landi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landi, B.J., Cress, C.D. & Raffaelle, R.P. High energy density lithium-ion batteries with carbon nanotube anodes. Journal of Materials Research 25, 1636–1644 (2010). https://doi.org/10.1557/JMR.2010.0209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0209

Navigation