Skip to main content

Advances in Lithium-Ion Battery Technology Based on Functionalized Carbon Nanotubes for Electrochemical Energy Storage

  • Chapter
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

Increasing demand for higher energy density and higher-power energy-storage devices from the portable power market and the automobile and telecommunication industries have led to the search for novel materials for electrodes or electrolytes that offer higher capacities and energy densities and better performance than the electrochemical energy-storage devices available today. It is recognized that these requirements cannot be met solely by the capabilities of conventional systems and energy materials. Nanomaterials, a cutting-edge technology, can serve as an alternative to traditional materials. Among these, carbon nanotubes (CNTs) and their hybrid nanostructures have been extensively studied in electrochemical energy storage devices such as lithium-ion batteries (LIBs), supercapacitors, solar cells, and fuel cells as ideal electrode materials. This is because of their unique, one-dimensional (1D) tubular structure and high surface area, aspect ratio, chemical stability, electrical, and thermal conductivities, along with their extremely high mechanical strength. Studies show that CNTs are capable of greatly improving the electrochemical characteristics of energy-storage systems, with enhanced energy conversion and storage capacities. This chapter discusses recent advances in lithium-ion/air batteries based on CNTs and their functionalized derivatives for electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology, vol 5. Academic, New York

    Google Scholar 

  2. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley-VCH, Weinheim

    Google Scholar 

  3. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nat Mater 4:366

    ADS  Google Scholar 

  4. Haas O, Cairns EJ (1999) Annu Rep Prog Chem Sect C Phys Chem 95:163

    Google Scholar 

  5. Liu X-M, Huang Z-DD, Oh S-WW, Zhang B, Ma P-C, Yuen MMF, Kim J-K (2011) Compos Sci Technol 72:121

    Google Scholar 

  6. Tarascon JM, Armand M (2001) Nature 414:359

    ADS  Google Scholar 

  7. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Energy Environ Sci 2:638

    Google Scholar 

  8. Kraytsberg A, Ein-Eli Y (2011) J Power Sources 196:886

    Google Scholar 

  9. Iijima S (1991) Nature 354:56

    ADS  Google Scholar 

  10. Lin Y, Taylor S, Li H, Shiral Fernando KA, Qu L, Wang W (2004) J Mater Chem 14:527

    Google Scholar 

  11. Moniruzzaman M, Winey KI (2006) Macromolecules 39:5194

    ADS  Google Scholar 

  12. Bethune DS, Johnson RD, Salem RJ, de Varies MS, Yannoni CS (1993) Nature 366:123

    ADS  Google Scholar 

  13. Thostenson ET, Ren ZF, Chou TW (2001) Compos Sci Technol 61:1899

    Google Scholar 

  14. Journet C, Maser WK, Bernier P, Loiseau A, de la Chapelle ML, Lefrant S (1997) Nature 388:756

    ADS  Google Scholar 

  15. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP (1998) Science 282:1105

    ADS  Google Scholar 

  16. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Macias FJ (1998) Appl Phys A 67:29

    ADS  Google Scholar 

  17. Nikolaev P, Bronikowski MJ, Bradley RK, Fohmund F, Colbert DT, Smith KA (1999) Chem Phys Lett 313:91

    ADS  Google Scholar 

  18. Nalimova VA, Sklovsky DE, Bondarenko GN, Alvergnat-Gaucher H, Bonnamy S, Béguin F (1997) Synth Met 88:89

    Google Scholar 

  19. Zhao J, Buldum A, Han J, Lu JP (2000) Phys Rev Lett 85:1706

    ADS  Google Scholar 

  20. Nishidate K, Hasegawa M (2005) Phys Rev B 71:245418

    ADS  Google Scholar 

  21. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Carbon 37:61

    Google Scholar 

  22. Liu P, Hornyak GL, Dillon AC, Gennett T, Heben MJ, Turner JA (1999) J Electrochem Soc Proc Int Symp 31

    Google Scholar 

  23. Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) J Electrochem Soc 147:2845

    Google Scholar 

  24. Hsoeh HM, Tai NH, Lee CY, Chen JM, Wang FT (2003) Rev Adv Mater Sci 5:67

    Google Scholar 

  25. Whittingham MS (2004) Chem Rev 104:4271

    Google Scholar 

  26. Jiang C, Hosono E, Zhou H (2006) Nano Today 1:28

    Google Scholar 

  27. Chen J, Minett AI, Liu Y, Lynam C, Sherrell P, Wang C, Wallace GG (2008) Adv Mater 20:566

    Google Scholar 

  28. Whittingham MS (2008) MRS Bull 33:411

    Google Scholar 

  29. Li H, Wang Z, Chen L, Huang X (2009) Adv Mater 21:4593

    Google Scholar 

  30. Wallace GG, Chen J, Mozer AJ, Forsyth M, MacFarlane DR, Wang C (2009) Mater Today 12:20

    Google Scholar 

  31. Dahn JR, von Sacken U, Juzkow MW, Al-Janaby H (1991) J Electrochem Soc 138:2207

    Google Scholar 

  32. Li W, Resimers JN, Dahn JR (1993) Solid State Ion 67:123

    Google Scholar 

  33. Resimers JN, Dahn JR, von Sacken U (1993) J Electrochem Soc 140:2752

    Google Scholar 

  34. Koetschau I, Richard MN, Dahn JR, Soupart JB, Rousche JC (1995) J Electrochem Soc 142:2906

    Google Scholar 

  35. Pistoia G, Zane D, Zhang Y (1995) J Electrochem Soc 142:2551

    Google Scholar 

  36. Jeong IS, Kim JU, Gu HB (2001) J Power Sources 102:55

    Google Scholar 

  37. Rodrigues S, Munichandraiah N, Shukla AK (2001) J Power Sources 102:322

    Google Scholar 

  38. Suresh P, Rodrigues S, Shukla AK, Sivashankar SA, Munichandraiah N (2002) J Power Sources 112:665

    Google Scholar 

  39. Jin B, Kim JU, Gu HB (2003) J Power Sources 117:148

    Google Scholar 

  40. Kim JU, Jo YJ, Park GC, Gu HB (2003) J Power Sources 119–121:686

    Google Scholar 

  41. Suresh P, Shukla AK, Munichandraiah N (2005) J Electrochem Soc 152:A2273

    Google Scholar 

  42. Suresh P, Shukla AK, Munichandraiah N (2006) J Power Sources 161:1307

    Google Scholar 

  43. Wang G, Zhang Q, Yu Z, Qu M (2008) Solid State Ion 179:263

    Google Scholar 

  44. Wang G, Li H, Zhang Q, Yu Z, Qu M (2011) J Solid State Electrochem 15:759

    Google Scholar 

  45. Zhang Q-T, Qu M-Z, Niu H, Yu Z-L (2007) New Carbon Mater 22:361

    ADS  Google Scholar 

  46. Sheem KY, Sung M, Lee YH (2010) Electrochim Acta 55:5808

    Google Scholar 

  47. Sheem KY, Lee YH, Lim HS (2006) J Power Sources 158:1425

    Google Scholar 

  48. Park JH, Lee SY, Kim JH, Ahn S, Park J-S, Jeong YU (2010) J Solid State Electrochem 14:593

    Google Scholar 

  49. Luo S, Wang K, Wang J, Jiang K, Li Q, Fan S (2012) Adv Mater 24:2294

    ADS  Google Scholar 

  50. Li X, Kang F, Shen W (2006) Electrochem Solid State Lett 9:A126

    Google Scholar 

  51. Li X, Kang F, Shen W (2006) Carbon 44:1334

    Google Scholar 

  52. Huang ZD, Liu XM, Zhang B, Oh SW, Wong SK, Kim JK (2011) Scripta Mater 64:122

    Google Scholar 

  53. Huang ZD, Liu XM, Oh SW, Zhang B, Ma PC, Kim JK (2011) J Mater Chem 21:10777

    Google Scholar 

  54. Singh N, Galande C, Miranda A, Mathkar A, Gao W, Mohanareddy AL, Vlad A, Ajayan PM (2012) Sci Rep 2:481

    ADS  Google Scholar 

  55. Ban C, Li Z, Wu Z, Kirkham MJ, Chen L, Jung YS, Payzant A, Yan Y, Whittingham S, Dillon AC (2011) Adv Energy Mater 1:58

    Google Scholar 

  56. Liu X-M, Huang Z-D, Oh S, Ma P-C, Chan PCH, Vedam GK, Kang K, Kim J-K (2010) J Power Sources 195:4290

    Google Scholar 

  57. Jia X, Yan Z-C, Chen Z-Z, Wang R, Zhang Q, Guo L, Wei F, Lu Y (2011) Chem Commun 47:9669

    Google Scholar 

  58. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Google Scholar 

  59. Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) J Solid State Electrochem 8:558

    Google Scholar 

  60. Jin B, Gu HB, Kim KW (2008) J Solid State Electrochem 12:105

    Google Scholar 

  61. Jin B, Gu HB, Zhang W, Park KH, Sun G (2008) J Solid State Electrochem 12:1549

    Google Scholar 

  62. Varzi A, Täubert C, Wohlfahrt-Mehrens M, Kreis M, Schütz W (2011) J Power Sources 196:3303

    Google Scholar 

  63. Li X, Kang F, Bai X, Shen W (2007) Electrochem Commun 9:663

    Google Scholar 

  64. Wang L, Huang Y, Jiang R, Jia D (2007) J Electrochem Soc 154:A1015

    Google Scholar 

  65. Kim SW, Ryu J, Park CB, Kang K (2010) Chem Commun 46:7409

    Google Scholar 

  66. Mohamed R, Ji S, Linkov V (2011) Int J Electrochem 283491:1

    Google Scholar 

  67. Kim EM, Park K-H, Gu H-B (2008) J Adv Eng Technol 1:107

    Google Scholar 

  68. Zhou Y, Wang J, Hu Y, O’Hayre R, Shao Z (2010) Chem Commun 46:7151

    Google Scholar 

  69. Yang J, Wang J, Li X, Wang D, Liu J, Liang G, Gauthier M, Li Y, Geng D, Li R, Sun X (2012) J Mater Chem 22:7537

    Google Scholar 

  70. Toprakci O, Toprakci HAK, Ji L, Xu G, Lin Z, Zhang X (2012) ACS Appl Mater Interfaces 4:1273

    Google Scholar 

  71. Gananavel M, Patel MUM, Sood AK, Bhattacharyya AJ (2012) J Electrochem Soc 159:A336

    Google Scholar 

  72. Murugan AV, Muraliganth T, Ferreira PJ, Manthiram A (2009) Inorg Chem 48:946

    Google Scholar 

  73. Xu J, Chen G, Li X (2009) Mater Chem Phys 118:9

    Google Scholar 

  74. Kavan L, Bacsa R, Tunckol M, Serp P, Zakeeruddin SM, LeFormal F, Zukalovs M, Graetzel M (2010) J Power Sources 195:5360

    Google Scholar 

  75. Schneider JJ, Khanderi J, Popp A, Engstler J, Tempel H, Sarapulova A, Bramnik NN, Mikhailova D, Ehrenberg H, Schmitt LA, Dimesso L, Förster C, Jaegermann W (2011) Eur J Inorg Chem 28:4349

    Google Scholar 

  76. Zou M-M, Ai D-J, Liu K-Y (2011) Trans Nonferrous Met Soc China 21:2010

    Google Scholar 

  77. Ma S-B, Nam K-W, Yoon W-S, Bak S-M, Yang X-Q, Cho B-W, Kim K-B (2009) Electrochem Commun 11:1575

    Google Scholar 

  78. Mohammadi A, Inganas O, Lundstrom I (1986) J Electrochem Soc 133:947

    Google Scholar 

  79. Osaka T, Naoi K, Ogano S (1988) J Electrochem Soc 185:1071

    Google Scholar 

  80. Novak P, Muller K, Santhanam KSV, Haas O (1997) Chem Rev 97:207

    Google Scholar 

  81. Goto F, Abe K, Okabayashi K, Yoshida T, Morimoto H (1987) J Power Sources 20:243

    Google Scholar 

  82. Cochet M, Maser WK, Benito AM, Callejas MA, Martinez MT, Benoit JM, Schreiber J, Chauvet O (2001) Chem Commun 16:1450

    Google Scholar 

  83. Cheng F, Tang W, Li C, Chen J, Liu H, Shen P, Dou S (2006) Chem Eur J 12:3082

    Google Scholar 

  84. Sivakkumar SR, MacFarlane DR, Forsyth M, Kim DW (2007) J Electrochem Soc 154:A834

    Google Scholar 

  85. Wang CY, Mottaghitalab V, Too CO, Spinks GM, Wallace GG (2007) J Power Sources 163:1105

    Google Scholar 

  86. He BL, Dong B, Wang W, Li HL (2009) Mater Chem Phys 114:371

    Google Scholar 

  87. Sivakkumar SR, Kimm DW (2007) J Electrochem Soc 154:A134

    Google Scholar 

  88. Shan Y, Gao L (2004) Chem Lett 33:1560

    Google Scholar 

  89. Baibarac M, Lira-Cantú M, Oró Sol J, Baltog I, Casañ-Pastor N, Gomez-Romero P (2007) Compos Sci Technol 67:2556

    Google Scholar 

  90. Han SC, Song MS, Lee H, Kim HS, Ahn HJ, Lee JY (2003) J Electrochem Soc 150:A889

    Google Scholar 

  91. Wei W, Wang J, Zhou L, Yang J, Schumann B, NuLi Y (2011) Electrochem Commun 13:399

    Google Scholar 

  92. Sivakkumar SR, Howlett PC, Winther-Jensen B, Forsyth M, MacFarlane DR (2009) Electrochim Acta 54:6844

    Google Scholar 

  93. Dahn JR (1991) Phys Rev B 44:9170

    ADS  Google Scholar 

  94. Satoh A, Takami N, Ohsaki T (1995) Solid State Ion 80:291

    Google Scholar 

  95. Reddy TB, Hossain S (2002) Rechargeable Lithium Batteries (Ambient Temperature). In: Linden D, Reddy TB (eds) Handbook of batteries, 3rd edn., pp 34.1–34.62

    Google Scholar 

  96. Besenhard JO, Yang J, Winter M (1997) J Power Sources 68:87

    Google Scholar 

  97. Winter M, Besenhard JO (1998) Adv Mater 10:725

    Google Scholar 

  98. Winter M, Besenhard JO (1999) Electrochim Acta 45:31

    Google Scholar 

  99. Obrovac MN, Christensen L (2004) Electrochem Solid State Lett 7:A93

    Google Scholar 

  100. NuLi Y, Yang J, Jiang M (2008) Mater Lett 62:2092

    Google Scholar 

  101. Wu YP, Rahm E, Holze R (2003) J Power Sources 114:228

    Google Scholar 

  102. Guo ZP, Milin E, Wang JZ, Chen J, Liu HK (2005) J Electrochem Soc 152:A2211

    Google Scholar 

  103. Liu WR, Yang MH, Wu HC, Chiao SM, Wu NL (2005) Electrochem Solid State Lett 8:A100

    Google Scholar 

  104. Liu Y, Matsumura T, Imanishi N, Hirano A, Ichikawa T, Takeda Y (2005) Electrochem Solid State Lett 8:A599

    Google Scholar 

  105. Amaratunga G, Nathan A, Nookala M, Smart MC (eds) (2009) Mater Res Soc Symp Proc 1:1127-T03-06

    Google Scholar 

  106. Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Int J Inorg Mater 1:77

    Google Scholar 

  107. Treacy MM, Ebbesen TW, Gibson JM (1996) Nature 381:678

    ADS  Google Scholar 

  108. Lier GV, Alsenoy CV, Doren VV, Geerlings G (2000) Chem Phys Lett 326:181

    ADS  Google Scholar 

  109. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Science 287:637

    ADS  Google Scholar 

  110. Meunier V, Kephart J, Roland C, Bernholc J (2002) Phys Rev Lett 88:075506(1)

    ADS  Google Scholar 

  111. Kumar TP, Ramesh R, Lin YY, Fey GTK (2004) Electrochem Commun 6:520

    Google Scholar 

  112. Mi CH, Cao GS, Zhao XB (2004) J Electroanal Chem 562:217

    Google Scholar 

  113. Morris RS, Dixon BG, Gennett T, Raffaelle R, Heben MJ (2004) J Power Sources 138:277

    Google Scholar 

  114. Nishidate K, Sasaki K, Oikawa Y, Baba M, Hasegawa M (2005) J Surf Sci Nanotechnol 3:358

    Google Scholar 

  115. Kawasaki S, Hara T, Iwai Y, Suzuki Y (2008) Mater Lett 62:2917

    Google Scholar 

  116. Yan J, Song H, Yang S, Yan J, Chen X (2008) Electrochim Acta 53:6351

    Google Scholar 

  117. Gao B, Bower C, Lorentzen JD, Fleming L, Kleinhammes A, Tang XP, McNeil LE, Wu Y, Zhou O (2000) Chem Phys Lett 327:69

    ADS  Google Scholar 

  118. Maurin G, Bousquet C, Henn F, Bernier P, Almairac R, Simon B (2000) Solid State Ion 136–137:1295

    Google Scholar 

  119. Yang Z-H, Wu H-Q (2001) Mater Lett 50:108

    Google Scholar 

  120. Shimoda H, Gao B, Tang XP, Kleinhammes A, Fleming L, Wu Y, Zhou O (2002) Phys Rev Lett 88:015502

    ADS  Google Scholar 

  121. Eom JY, Park JW, Kwon HS, Rajendrana S (2006) J Electrochem Soc 153:A1678

    Google Scholar 

  122. Zhang Y, Zhao ZG, Zhang XG, Zhang HL, Li F, Liu C, Cheng HM (2008) Int J Nanomanuf 2(1/2):4

    Google Scholar 

  123. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Nano Lett 9(3):1002

    ADS  Google Scholar 

  124. Zhang HX, Feng C, Zhai YC, Jiang KL, Li QQ, Fan SS (2009) Adv Mater 21:2299

    Google Scholar 

  125. Dubot P, Cenedese P (2001) Phys Rev B 63:241402

    ADS  Google Scholar 

  126. Kar T, Pattanayak J, Scheiner S (2001) J Phys Chem A 105:10397

    Google Scholar 

  127. Yang J, Liu HJ, Chan CT (2001) Phys Rev B 64:085420

    ADS  Google Scholar 

  128. Garau C, Frontera A, Quinonero D, Costa A, Ballester P, Deya PM (2003) Chem Phys Lett 374:548

    ADS  Google Scholar 

  129. Garau C, Frontera A, Quinonero D, Costa A, Ballester P, Deya PM (2004) Chem Phys 297:85

    ADS  Google Scholar 

  130. Liu Y, Yukawa H, Morinaga M (2004) Commun Mater Sci 30:50

    Google Scholar 

  131. Udomvech A, Kerdcharoen T, Osotchan T (2005) Chem Phys Lett 406:161

    ADS  Google Scholar 

  132. Zhao M, Xia Y, Mei L (2005) Phys Rev B 71:165413

    ADS  Google Scholar 

  133. Zhao M, Xia Y, Liu X, Tan Z, Huang B, Li F, Ji Y, Song C (2005) Phys Lett A 340:434

    ADS  Google Scholar 

  134. Eom JY, Kim DY, Kwon HS (2006) J Power Sources 157:507

    Google Scholar 

  135. Wang XX, Wang JN, Su LF (2009) J Power Sources 186:194

    Google Scholar 

  136. Shimoda H, Gao B, Tang XP, Kleinhammes A, Fleming L, Wu Y, Zhou O (2002) Physica B 323:133

    ADS  Google Scholar 

  137. Wang XX, Wang JN, Chang H, Zhang YF (2007) Adv Funct Mater 17:3613

    Google Scholar 

  138. Kaskhedikar NA, Maier J (2009) Adv Mater 21:2664

    Google Scholar 

  139. Lv R, Zou L, Gui X, Kang F, Zhu Y, Zhu H, Wei J, Gu J, Wang K, Wu D (2008) Chem Commun 7:2046

    Google Scholar 

  140. Zhou J, Song H, Fu B, Wu B, Chen X (2010) J Mater Chem 20:2794

    Google Scholar 

  141. Carrol DL, Redlich P, Blase X, Charlier JC, Curran S, Ajayan PM et al (1998) Phys Rev Lett 81:2332

    ADS  Google Scholar 

  142. Wei B, Spolenak R, Redlich PK, Ruhle M, Artz E (1999) Appl Phys Lett 74:3149

    ADS  Google Scholar 

  143. Landi BJ, DiLeo RA, Schauerman CM, Cress CD, Ganter MJ, Raffaelle RP (2009) J Nanosci Nanotechnol 9:3406

    Google Scholar 

  144. Li X, Liu J, Zhang Y, Li Y, Liu H, Meng X, Yang J, Geng D, Wang D, Li R, Sun X (2012) J Power Sources 197:238

    Google Scholar 

  145. Gupta N, Toh T, Fatt MW, Mhaisalkar S, Srinivasan M (2012) J Solid State Electrochem 16:1585

    Google Scholar 

  146. Kaiser AB, Skakalova V, Roth S (2008) Physica E 40:2311

    ADS  Google Scholar 

  147. Jin B, Jin EM, Park KH, Gu HB (2008) Electrochem Commun 10:1537

    Google Scholar 

  148. Gao B, Kleinhammes A, Tang XP, Bower C, Fleming L, Wu Y, Zhou O (1999) Chem Phys Lett 307:153

    ADS  Google Scholar 

  149. Gao B, Shimoda H, Tang XP, Kleinhammes A, Fleming L, Wu Y, Zhou O (2001) AIP Conf Proc 590:95

    ADS  Google Scholar 

  150. Jeong SK, Inaba M, Mogi R, Iriyama Y, Abe T, Ogumi Z (2001) Langmuir 17:8281

    Google Scholar 

  151. Mukhopadhyay I, Kawasaki S, Okino F, Govindaraj A, Rao CNR, Touhara H (2002) Physica B 323:130

    ADS  Google Scholar 

  152. Ng SH, Wang J, Guo ZP, Chen J, Wang GX, Liu HK (2005) Electrochim Acta 51:23

    Google Scholar 

  153. Eom JY, Kwon HS (2008) J Mater Res 23:2458

    ADS  Google Scholar 

  154. Lahiri I, Oh SW, Hwang JY, Cho S, Sun YK, Banerjee R, Choi W (2010) ACS Nano 4:3440

    Google Scholar 

  155. Lahiri I, Oh SM, Hwang JY, Kang C, Jeon H, Banerjee R, Sun YK, Choi W (2011) J Mater Chem 21:13621

    Google Scholar 

  156. Dai H (2002) Surf Sci 500:218

    ADS  Google Scholar 

  157. Guo ZP, Zhao ZW, Liu HK, Dou SX (2005) Carbon 43:1392

    Google Scholar 

  158. Chen WX, Lee JY, Liu ZL (2003) Carbon 41:959

    Google Scholar 

  159. Park MS, Needham SA, Wang GX, Kang YM, Park JS, Dou SX, Liu HK (2007) Chem Mater 19:2406

    Google Scholar 

  160. Xie J, Zhao XB, Cao GS, Zhao MJ (2004) Electrochim Acta 50:2725

    Google Scholar 

  161. Zhai C, Du N, Zhang H, Yu J, Wu P, Xiao C et al (2011) Nanoscale 3:1798

    ADS  Google Scholar 

  162. Yin JT, Wada M, Kitano Y, Tanase S, Kajita O, Sakai T (2005) J Electrochem Soc 152:A1341

    Google Scholar 

  163. Huang H, Zhang WK, Gan XP, Wang C, Zhang L (2007) Mater Lett 61:296

    Google Scholar 

  164. Wang Y, Zeng HC, Lee JY (2006) Adv Mater 18:645

    Google Scholar 

  165. An G, Na N, Zhang X, Miao Z, Miao S, Ding K, Liu Z (2007) Nanotechnology 18:435707

    ADS  Google Scholar 

  166. Wen Z, Wang Q, Zhang Q, Li J (2007) Adv Funct Mater 17:2772

    Google Scholar 

  167. Huang J, Jiang Z (2008) Electrochim Acta 53:7756

    Google Scholar 

  168. Kim T, Mo YH, Nahm KS, Oh SM (2006) J Power Sources 162:1275

    Google Scholar 

  169. Fu Y, Ma R, Shu Y, Cao Z, Ma X (2009) Mater Lett 63:1946

    Google Scholar 

  170. Ni H, Fan LZ (2012) J Power Sources 214:195

    Google Scholar 

  171. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496

    ADS  Google Scholar 

  172. Tarascon JM, Grugeon S, Morcrette M, Laruelle S, Rozier P, Poizot P (2005) CR Chem 8:9

    Google Scholar 

  173. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) Nat Mater 5:567

    ADS  Google Scholar 

  174. Li J, Tang S, Lu L, Zeng HC (2007) J Am Chem Soc 129:9401

    Google Scholar 

  175. Wang Z, Luan D, Madhavi Z, Hu Y, Lou XWD (2012) Energy Environ Sci 5:5252

    Google Scholar 

  176. Lee DH, Kim DW, Park JG (2008) Cryst Growth Des 8:4506

    Google Scholar 

  177. Zhang WJ (2010) J Power Sources 196:13

    Google Scholar 

  178. Ahn D, Xiao X, Li Y, Sachdev AK, Park HW, Yu A, Chen Z (2012) Power Sources 212:66

    Google Scholar 

  179. Zhang H, Song H, Chen X, Zhou J, Zhang H (2012) Electrochim Acta 59:160

    Google Scholar 

  180. Liu H, Huang J, Li X, Liu J, Zhang YJ (2012) J Sol-Gel Sci Technol 63:569

    Google Scholar 

  181. Huggins RA (1999) Lithium Alloy Anodes. In: Besenhard JO (ed) Handbook of battery materials. Wiley-VCH, Weinheim, Part III, Chapter 4, pp 359

    Google Scholar 

  182. Li H, Huang XJ, Chen LQ, Wu ZG, Liang Y (1999) Electrochem Solid State Lett 2:547

    Google Scholar 

  183. Ren Y, Ding J, Yuan N, Jia S, Qu M, Yu Z (2012) J Solid State Electrochem 16:1453

    Google Scholar 

  184. Cui LF, Hu L, Choi JW, Cui Y (2010) ACS Nano 4:3671

    Google Scholar 

  185. Gohier A, Laïk B, Kim KH, Maurice JL, Ramos JPP, Cojocaru CS, Vakm PT (2012) Adv Mater 24:2592

    Google Scholar 

  186. Lee J, Bae J, Heo J, Han IT, Cha SN, Kim DK, Yang M, Han HS, Jeon WS, Chung J (2009) J Electrochem Soc 156:A905

    Google Scholar 

  187. Zhou Z, Xu Y, Hojamberdiev M, Liu W, Wang J (2010) J Alloys Compd 507:309

    Google Scholar 

  188. Chen S, Chen P, Wang Y (2011) Nanoscale 3:4323

    ADS  Google Scholar 

  189. Zhang J, Xu W, Li X, Liu W (2010) J Electrochem Soc 157:A940

    Google Scholar 

  190. Zhang GQ, Zheng JP, Liang R, Zhang C, Wang B, Hendrickson M, Plichta EJ (2010) J Electrochem Soc 157:A953

    Google Scholar 

  191. Li Y, Wang J, Li X, Liu J, Geng D, Yang J, Li R, Sun X (2011) Electrochem Commun 13:668

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavan Prasanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Prasanth, R., Shankar, R., Gupta, N., Ahn, JH. (2015). Advances in Lithium-Ion Battery Technology Based on Functionalized Carbon Nanotubes for Electrochemical Energy Storage. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_33

Download citation

Publish with us

Policies and ethics