Skip to main content
Log in

Influence of high-temperature treatment of granular activated carbon on its structure and electrochemical behavior in aqueous electrolyte solution

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Activated carbon Norit R3-ex (demineralized) was annealed at various temperatures (950-2700 °C) in an argon atmosphere. The changes of the porosity of the products were characterized on the basis of N2 adsorption isotherms (at 77 K). The texture of the samples was investigated by x-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The presence of surface oxygen (Fourier transform infrared) and its content in the surface layer (from energy dispersive spectroscopy) were determined. The electrical resistivity of powdered samples was measured. Cyclovoltammetry of carbon (powdered electrodes) were carried out and the electrical double-layer capacitances were estimated from the cyclic voltammetry curves. Heat treatment increased the degree of crystallization of the samples, which was correlated with changes in their conductivity. A rapid drop in porosity (at 1800-2100 °C) took place in parallel with a decrease in the electrical double layer capacity. The presence of surface oxygen as a result of oxygen chemisorption on freshly annealed carbon samples was confirmed using several methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Kowalczyk, J. Sentek, S. Jodzis, R. Diduszko, A. Presz, A. Terzyk, Z. Kucharski, J. Suwalski: Thermally modified active carbon as support for catalysts for NH3 synthesis. Carbon34403 (1996)

    Article  CAS  Google Scholar 

  2. L. Forni, D. Molinari, I. Rossetti, N. Pernicone: Carbon-supported promoted Ru catalyst for ammonia synthesis. Appl. Catal., A185269 (1999)

    Article  CAS  Google Scholar 

  3. X.L. Zheng, S.J. Zhang, J.X. Xu, K. Wei: Effect of thermal and oxidative treatments of activated carbon on its surface structure and suitability as a support for barium-promoted ruthenium in ammonia synthesis catalysts. Carbon402597 (2002)

    Article  CAS  Google Scholar 

  4. B. Yi, R. Rajagopalan, C.L. Burket, H.C. Foley, X.M. Liu, P.C. Eklund: High temperature rearrangement of disordered nanoporous carbon at the interface with single wall carbon nanotubes. Carbon472303 (2009)

    Article  CAS  Google Scholar 

  5. S. Błażewicz, A. Świątkowski, B.J. Trznadel: The influence of heat treatment on activated carbon structure and porosity. Carbon37693 (1999)

    Article  Google Scholar 

  6. N. Ptrobst, E. Grivei: Structure and electrical properties of carbon black. Carbon40201 (2002)

    Article  Google Scholar 

  7. S. Biniak, A. Świątkowski, M. Pakuła:: Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces Chemistry and Physics of Carbonedited by L.R. Radovic Vol. 27 (Marcel Dekker Inc, New York 2001)125

    CAS  Google Scholar 

  8. J.C. Card, G. Valentin, A. Storck: The activated carbon electrode: A new, experimentally verified mathematical model for the potential distribution. J. Electrochem. Soc.1372736 (1990)

    Article  CAS  Google Scholar 

  9. R.C. Bansal, M. Goyal Activated Carbon Adsorption(CRC Press Taylor & Francis, LLC,, Boca Raton, FL 2005)

    Book  Google Scholar 

  10. C. Lastoskie, K.E. Gubbins, N. Quirke: Pore-size distribution analysis of microporous carbons: A density-functional theory approach. J. Phys. Chem.974786 (1993)

    Article  CAS  Google Scholar 

  11. P.H. Tan, S. Dimovski, Y. Gogotsi: Raman scattering of non-planar graphite: Arched edges, polyhedral crystals, whiskers and cones. Philos. Trans. R. Soc. London, Ser. A3622289 (2004)

    Article  CAS  Google Scholar 

  12. J. Dong, W. Shen, B. Zhang, X. Liu, F. Kang, J. Gu, D. Li, L.P. Chen: New origin of spirals and new growth process of carbon whiskers. Carbon392325 (2001)

    Article  CAS  Google Scholar 

  13. A.S. Fialkov, B.N. Smirnov, N.V. Bondarenko, S.G. Zaichikov, N.V. Polyakova, V.A. Mikhailova, A.I. Baver: Investigation of the structure of carbon fibres by means of the scanning electron microscopy. Mech. Compos. Mater.8811 (1972)

    Google Scholar 

  14. Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo: X-ray diffraction patterns of graphite and turbostratic carbon. Carbon451686 (2007)

    Article  CAS  Google Scholar 

  15. N. Iwashita, C.R. Park, H. Fujimoto, M. Shiraishi, M. Inagaki: Specification for a standard procedure of x-ray diffraction measurements on carbon materials. Carbon42701 (2004)

    Article  CAS  Google Scholar 

  16. F. Tuinistra, J.L. Koenig: Raman spectrum of graphite. J. Chem. Phys.531126 (1970)

    Article  Google Scholar 

  17. A.C. Ferrari, J. Robertson: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B6114095 (2000)

    Article  CAS  Google Scholar 

  18. A. Yoshida, Y. Kaburagi, Y. Hishiyama: Full width at half-maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization. Carbon44, (11) 2333 (2006)

    Article  CAS  Google Scholar 

  19. A.C. Ferrari, S.E. Rodil, J. Robertson: Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B67155306 (2003)

    Article  CAS  Google Scholar 

  20. M.R. Baldan, E.C. Almeida, A.F. Azevedo, E.S. Golcaves, M.C. Rezende, N.G. Ferreira: Raman validity for crystallite size La determination on reticulated vitreous carbon with different graphitization index. Appl. Surf. Sci.254, (2) 600 (2007)

    Article  CAS  Google Scholar 

  21. S. Biniak, M. Pakuła, A. Świątkowski, M. Walczyk:: Studies on chemical properties of activated carbon surface Carbon Materials: Theory and Practiceedited by A.P. Terzyk, P.A. Gauden, andP. Kowalczyk (Research Signpost, Trivandrum, India 2008)51

    Google Scholar 

  22. S. Biniak, G.S. Szymański, J. Siedlewski, A. Świątkowski: The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon351799 (1997)

    Article  CAS  Google Scholar 

  23. P. Vinke, M. van der Eijk, M. Verbee, A.F. Voskamp, H. van Bekkum: Modification of the surfaces of a gas activated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia. Carbon32675 (1994)

    Article  CAS  Google Scholar 

  24. J. Zawadzki:: Infrared spectroscopy in surface chemistry of carbons Chemistry and Physics of Carbonedited by P.A. Thrower Vol. 21 (Marcel Dekker, New York 1988)147

    Google Scholar 

  25. J.J. Venter, M.A. Vannice: Applicability of “drifts” for the characterization of carbon-supported metal catalysts and carbon surfaces. Carbon26889 (1988)

    Article  CAS  Google Scholar 

  26. J.M. Thomas, E.L. Evans, M. Barber, P. Swift: Determination of the occupancy of valence bands in graphite, diamond and less-ordered carbons by x-ray photo-electron spectroscopy. Trans. Faraday Society671875 (1971)

    Article  CAS  Google Scholar 

  27. J.P. Randin, E. Yeager: Differential capacitance study on basal plane of stress-annealed pyrolytic-graphite. J. Electroanal. Chem.36257 (1972)

    Article  CAS  Google Scholar 

  28. A. Espinola, P.M. Miguel, M.R. Salles, A.R. Pinto: Electrical properties of carbons—Resistance of powdered materials. Carbon24337 (1986)

    Article  CAS  Google Scholar 

  29. J. Sanchez-Gonzalez, A. Macias-Garcia, M.F. Alexandre-Franco, V. Gomez-Serrano: Electrical conductivity of carbon blacks under compression. Carbon43741 (2005)

    Article  CAS  Google Scholar 

  30. L.J. Kennedy, J.J. Vijaya, G. Sekaran: Electrical conductivity study of porous carbon composite derived from rice husk. Mater. Chem. Phys.91471 (2005)

    Article  CAS  Google Scholar 

  31. K-H. Radeke, K.O. Backhaus, A. Swiatkowski: Electrical conductivity of activated carbons. Carbon29122 (1991)

    Article  CAS  Google Scholar 

  32. S.S. Barton, J.E. Koresh: A study of the surface oxides on carbon cloth by electrical conductivity. Carbon22481 (1984)

    Article  CAS  Google Scholar 

  33. M. Polovina: Surface characterization of oxidized activated carbon cloth. Carbon351047 (1997)

    Article  CAS  Google Scholar 

  34. C-C. Liu, A.B. Walters, M.A. Vannice: Measurements of electrical properties of a carbon black. Carbon331699 (1995)

    Article  CAS  Google Scholar 

  35. K. Kinoshita Carbon: Electrochemical and Physicochemical Properties(Wiley, New York 1988)

    Google Scholar 

  36. B. Kastening, M. Hahn, B. Rabanus, M. Heins, U. Felde: Electronic properties and double layer of activated carbon. Electrochim. Acta422789 (1997)

    Article  CAS  Google Scholar 

  37. C. Portet, G. Yushin, Y. Gogotsi: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon452511 (2007)

    Article  CAS  Google Scholar 

  38. C. Portet, J. Chmiola, Y. Gogotsi, S. Park, K. Lian: Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta537675 (2008)

    Article  CAS  Google Scholar 

  39. M.J. Bleda-Martinez, J.A. Macia-Agullo, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, A. Linares-Solano: Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon432677 (2005)

    Article  CAS  Google Scholar 

  40. E. Frackowiak, F. Beguin: Carbon materials for the electrochemical storage of energy in capacitors. Carbon39937 (2001)

    Article  CAS  Google Scholar 

  41. C.T. Hsish, H. Teng: Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon40667 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Biniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biniak, S., Pakuła, M., Świątkowski, A. et al. Influence of high-temperature treatment of granular activated carbon on its structure and electrochemical behavior in aqueous electrolyte solution. Journal of Materials Research 25, 1617–1628 (2010). https://doi.org/10.1557/JMR.2010.0207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0207

Navigation