Skip to main content
Log in

Electrospun Teflon AF fibers for superhydrophobic membranes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Superhydrophobic membranes have the potential to protect devices from incidental exposure to water. This paper reports on the processing of Teflon AF fluoropolymers through electrospinning. Teflon AF is difficult to electrospin due to its low dielectric constant and the low dielectric constants of the liquids in which it is soluble. The two approaches that have been utilized to produce fibers are direct electrospinning in Novec engineering liquids and core-shell electrospinning. Both methods produced superhydrophobic membranes. Fibers with an average diameter of 290 nm and average water contact angle of 151° were obtained by core-shell electrospinning. One suggested application for electrospun superhydrophobic membranes is the lithium-air battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Marmur: The lotus effect: Super-hydrophobicity and metastability. Langmuir203517 (2004)

    Article  CAS  Google Scholar 

  2. N.A. Patankar: On the modeling of hydrophobic contact angles on rough surfaces. Langmuir191249 (2003)

    Article  CAS  Google Scholar 

  3. N.A. Patankar: Mimicking the lotus effect: Influence of double roughness structures and slender pillars. Langmuir208209 (2004)

    Article  CAS  Google Scholar 

  4. L. Jiang, Y. Zhao, J. Zhai: A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. Int. Ed.434338 (2004)

    Article  CAS  Google Scholar 

  5. D. Han, A.J. Steckl: Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir259454 (2009)

    Article  CAS  Google Scholar 

  6. M. Ma, R.M. Hill, G.C. Rutledge: A review of recent results on superhydrophobic materials based on micro- and nanofibers. J. Adhes. Sci. Technol.221799 (2008)

    Article  CAS  Google Scholar 

  7. M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikh, G.C. Rutledge: Electrospun poly(styrene-co-dimethylsiloxane) block copolymer fibers exhibiting microphase separation and superhydrophobicity. Langmuir215549 (2005)

    Article  CAS  Google Scholar 

  8. M. Ma, Y. Mao, M. Gupta, K.K. Gleason, G.C. Rutledge: Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules389742 (2005)

    Article  CAS  Google Scholar 

  9. M. Ma, M. Gupta, Z. Li, L. Zhai, K.K. Gleason, R.E. Cohen, M.F. Rubner, G.C. Rutledge: Decorated electrospun fibers exhibiting superhydrophobicity. Adv. Mater.19255 (2007)

    Article  CAS  Google Scholar 

  10. D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys.874531 (2000)

    Article  CAS  Google Scholar 

  11. Z. Sun, E. Zussman, A.L. Yarin, J.H. Wendorff, A. Greiner: Compound core-shell polymer nanofibers by co-electrospinning. Adv. Mater.151929 (2003)

    Article  CAS  Google Scholar 

  12. Product information DuPont Teflon AF Amorphous Fluoropolymers (Accessed 9 January 2010 http://www2.dupont.com/Teflon_Industrial/en_US/assets/downloads/h44587.pdf)

  13. Electronics Markets Materials Division 3M Center St. Paul, MN (www.3M.com/novec)

  14. 3M Product Information Fluorinert Liquids for Electronics Manufacturing (Accessed 9 January 2010 http://multimedia.3m.com/mws/mediawebserver?66666UuZjcFSLXTt4xTyLx&_EVuQEcuZgVs6EVs6E666666-mws/mediawebserver?66666UuZjcFSLXTt4xTyLx&_EVuQEcuZgVs6EVs6E666666-) Novec Engineered Fluid HFE-7100 for Heat Transfer (Accessed 9 January 2010 http://multimedia.3m.com/mws/mediawebserver?66666UuZjcFSLXTtlxTcm8TtEVuQEcuZgVs6EVs6E666666-mws/mediawebserver?66666UuZjcFSLXTtlxTcm8TtEVuQEcuZgVs6EVs6E666666-)

    Google Scholar 

  15. D. Linden, T.B. Reddy Handbook of Batteries3rd ed (McGraw-Hill, New York 2002)

    Google Scholar 

  16. T. Kuboki, T. Okuyama, N. Takami: Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J. Power Sources146766 (2005)

    Article  CAS  Google Scholar 

  17. R.E. Williford, J-G. Zhang: Air electrode design for sustained high-power operation of Li/air batteries. J. Power Sources1941164 (2009)

    Article  CAS  Google Scholar 

  18. S.D. Beattie, D.M. Manolescu, S.L. Blair: High-capacity lithium-air cathodes. J. Electrochem. Soc.156A44 (2009)

    Article  CAS  Google Scholar 

  19. R. Srikar, T. Gambaryan-Roisman, C. Steffes, P. Stephan, C. Tropea, A.L. Yarin: Nanofiber coating of surfaces for intensification of drop or spray impact cooling. Int. J. Heat Mass Transfer525814 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Sigmund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffler, R., Bell, N.S. & Sigmund, W. Electrospun Teflon AF fibers for superhydrophobic membranes. Journal of Materials Research 25, 1595–1600 (2010). https://doi.org/10.1557/JMR.2010.0205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0205

Navigation