Skip to main content
Log in

Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.E. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications(Kluwer Academic/Plenum, New York 1999)

    Book  Google Scholar 

  2. US Department of Energy Basic research needs for electrical energy storage: Report of the basic energy sciences workshop on electrical energy storage (http://www.sc.doe.gov/bes/reports/files/EES_rpt.pdf) 2007

    Google Scholar 

  3. The special issue on electrochemical capacitors. Electrochem. Soc. Interf.1731 (2008)

    Google Scholar 

  4. J.R. Miller, P. Simon: Materials science—Electrochemical capacitors for energy management. Science321651 (2008)

    Article  CAS  Google Scholar 

  5. A. Burke: Ultracapacitors: Why, how, and where is the technology. J. Power Sources9137 (2000)

    Article  CAS  Google Scholar 

  6. R. Kötz, M. Carlen: Principles and applications of electrochemical capacitors. Electrochim. Acta452483 (2000)

    Article  Google Scholar 

  7. P. Simon, Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater.7845 (2008)

    Article  CAS  Google Scholar 

  8. A.G. Pandolfo, A.F. Hollenkamp: Carbon properties and their role in supercapacitors. J. Power Sources15711 (2006)

    Article  CAS  Google Scholar 

  9. E. Frackowiak: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys.91774 (2007)

    Article  CAS  Google Scholar 

  10. P.A. Tipler Physics(Worth, New York 1976)768–771

    Google Scholar 

  11. H. Shi: Activated carbons and double layer capacitance. Electrochim. Acta411633 (1996)

    Article  CAS  Google Scholar 

  12. C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, F. Béguin: Electrochemical energy storage in ordered porous carbon materials. Carbon431293 (2005)

    Article  CAS  Google Scholar 

  13. M. Sevilla, S. Alvarez, T.A. Centeno, A.B. Fuertes, F. Stoeckli: Performance of templated mesoporous carbons in supercapacitors. Electrochim. Acta523207 (2007)

    Article  CAS  Google Scholar 

  14. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna: Anomalous increase in carbon capacitance at pore size less than 1 nanometer. Science3131760 (2006)

    Article  CAS  Google Scholar 

  15. J. Huang, B.G. Sumpter, V. Meunier: Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed.47520 (2008)

    Article  CAS  Google Scholar 

  16. H. Gerischer: The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta351677 (1990)

    Article  CAS  Google Scholar 

  17. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed.47373 (2008)

    Article  CAS  Google Scholar 

  18. M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, R.S. Ruoff: Graphene-based ultracapacitors. Nano Lett.83498 (2008)

    Article  CAS  Google Scholar 

  19. J. Huang, B.G. Sumpter, V. Meunier: A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem. Eur. J.146614 (2008)

    Article  CAS  Google Scholar 

  20. C. Portet, G. Yushin, Y. Gogotsi: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon452511 (2007)

    Article  CAS  Google Scholar 

  21. E.G. Bushueva, P.S. Galkin, A.V. Okotrub, L.G. Bulusheva, N.N. Gavrilov, V.L. Kuznetsov, S.I. Moiseekov: Double layer supercapacitor properties of onion-like carbon materials. Phys. Status Solidi B2452296 (2008)

    Article  CAS  Google Scholar 

  22. K. Lian, S. Park, Y. Gogotsi: Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid. J. Electrochem. Soc.156A921 (2009)

    Article  Google Scholar 

  23. Y. Honda, T. Haramoto, M. Takeshige, H. Shiozaki, T. Kitamura, K. Yoshikawa, M. Ishikawa: Performance of electric double-layer capacitor with vertically aligned MWCNT sheet electrodes prepared by transfer methodology. J. Electrochem. Soc.155A930 (2008)

    Article  CAS  Google Scholar 

  24. Y. Honda, M. Takeshige, H. Shiozaki, T. Kitamura, K. Yoshikawa, S. Chakrabarti, O. Suekane, L.J. Pan, Y. Nakayama, M. Yamagata, M. Ishikawa: Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor. J. Power Sources1851580 (2008)

    Article  CAS  Google Scholar 

  25. V.L. Kuznetsov, Y.V. Butenko, A.L. Chuvilin, A.I. Romanenko, A.V. Okotrub: Electrical resistivity of graphitized ultra-disperse diamond and onion-like carbon. Chem. Phys. Lett.336397 (2001)

    Article  CAS  Google Scholar 

  26. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi: Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selectrive oxidation in air. J. Am. Chem. Soc.12811635 (2006)

    Article  CAS  Google Scholar 

  27. T. Iwasaki, T. Maki, D. Yokoyama, H. Kumagai, Y. Hashimoto, T. Asari, H. Kawarada: Highly selective growth of vertically aligned double-walled carbon nanotubes by a controlled heating method and their electric double-layer capacitor properties. Phys. Status Solidi RPL253 (2008)

    Article  CAS  Google Scholar 

  28. Y. Honda, T. Ono, M. Takeshige, N. Morihara, H. Shiozaki, T. Kitamura, K. Yoshikawa, M. Morita, M. Yamagata, M. Ishikawa: Effect of MWCNT bundle structure on electric double-layer capacitor performance. Electrochem. Solid-State Lett.12A45 (2009)

    Article  CAS  Google Scholar 

  29. H. Zhang, G.P. Cao, Y.S. Yang: Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte. J. Power Sources172476 (2007)

    Article  CAS  Google Scholar 

  30. C. Portet, J. Chmiola, Y. Gogotsi, S. Park, K. Lian: Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta537675 (2008)

    Article  CAS  Google Scholar 

  31. D. Hulicova-Jurcakova, X. Li, Z.H. Zhu, R. de Marco, G.Q. Lu: Graphitic carbon nanofibers synthesized by the chemical vapor deposition (CVD) method and their electrochemical performances in supercapacitors. Energy Fuels224139 (2008)

    Article  CAS  Google Scholar 

  32. Y. Korenblit, M. Rose, K. Kockrick, L. Borchardt, A. Kvit, S. Kaskel, S. Yushin: High-rate electrochemical capacitorsbased on ordered mesoporous silicon carbide-derived carbon. ACS Nano41337 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Huang.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Sumpter, B.G., Meunier, V. et al. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors. Journal of Materials Research 25, 1525–1531 (2010). https://doi.org/10.1557/JMR.2010.0195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0195

Navigation