Skip to main content
Log in

Time-dependent nanoindentation behavior of high elastic modulus dental resin composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation and the viscous-elastic–plastic (VEP) model developed by Oyen and Cook for lightly filled thermoplastic polymer composites were used to characterize the elastic modulus, hardness, and viscoelastic response of a new high elastic modulus dental resin composite. The VEP model was used because loading rate studies indicated a viscous component in the loading/unloading response of our highly filled, thermosetting acrylic resin composites. Increasing the volume fraction of our high modulus filler increased the elastic modulus and hardness and decreased the viscous response in our composites. Coupling the filler and resin matrix with a commercial coupling agent like Metaltite or MPTMS (3-methacryloxypropyltrimethoxysilane) that ionically bonds to the filler and covalently bonds to the matrix decreases the viscous response and increases the hardness of the composite. The coupling agents did not affect the elastic modulus. The ability of the VEP model to predict load–displacement trajectories and the correlation of the elastic modulus and hardness values determined from the VEP model with those from the direct continuous stiffness measurement mode nanoindentation measurements indicate that the VEP model can be extended to highly filled, thermosetting systems. This is valuable since the potential to predict elastic, plastic, and viscous contributions to behavior should be valuable in the design and understanding of future highly filled resin composite systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Malament, S.S. Socransky Survival of Dicor glass-ceramic dental restorations over 14 years. Part II: Effect of thickness of Dicor material and design of tooth preparation. J. Prosthet. Dent. 81, 662 (1999)

    Article  CAS  Google Scholar 

  2. K.A. Malament, S.S. Socransky Survival of Dicor glass-ceramic dental restorations over 14 years: Part I. Survival of Dicor complete coverage restorations and effect of internal surface acid etching, tooth position, gender, and age. J. Prosthet. Dent. 81, 23 (1999)

    Article  CAS  Google Scholar 

  3. V.P. Thompson, D.E. Rekow Dental ceramics and the molar crown testing ground. J. Appl. Oral Sci. 12, 26 (2004)

    Article  Google Scholar 

  4. B.R. Lawn, A. Pajares, Y. Zhang, Y. Deng, M.A. Polack, I.K. Lloyd, E.D. Rekow, V.P. Thompson Materials design in the performance of all-ceramic crowns. Biomaterials 25, 2885 (2004)

    Article  CAS  Google Scholar 

  5. J.H. Kim, P. Miranda, D.K. Kim, B.R. Lawn Effect of an adhesive interlayer on the fracture of a brittle coating on a supporting substrate. J. Mater. Res. 18, 222 (2003)

    Article  CAS  Google Scholar 

  6. Y.J. Wang, J.J. Lee, I.K. Lloyd, O.C. Wilson, M. Rosenblum, V. Thompson High modulus nanopowder reinforced dimethacrylate matrix composites for dental cement applications. J. Biomed. Mater. Res. Part A 1, 651 (2007)

    Article  Google Scholar 

  7. J.J. Lee, Y.J. Wang, I.K. Lloyd, B.R. Lawn Joining veneers to ceramic cores and dentition with adhesive interlayers. J. Dent. Res. 86, 745 (2007)

    Article  CAS  Google Scholar 

  8. J.J.W. Lee, H. Chai, I.K. Lloyd, B.R. Lawn Crack propagation across an adhesive interlayer in flexural loading. Scr. Mater. 57, 1077 (2007)

    Article  CAS  Google Scholar 

  9. J.J.W. Lee, J.Y. Kwon, S. Bhowmick, I.K. Lloyd, E.D. Rekow, B.R. Lawn Veneer vs. core failure in adhesively bonded all-ceramic crown layers. J. Dent. Res. 87, 363 (2008)

    Article  Google Scholar 

  10. J.J.W. Lee, I.K. Lloyd, H. Chai, Y.G. Jung, B.R. Lawn Arrest, deflection, penetration and reinitiation of cracks in brittle layers across adhesive interlayers. Acta Mater. 58, 5859 (2007)

    Article  Google Scholar 

  11. M. Huang, X. Niu, P. Shrotriya, V. Thompson, D. Rekow, W.O. Soboyejo Contact damage of dental multilayers: Viscous deformation and fatigue mechanisms. J. Eng. Mater-T Asme 127, 33 (2005)

    Article  CAS  Google Scholar 

  12. D.K. Kim, Y.G. Jung, I.M. Peterson, B.R. Lawn Cyclic fatigue of intrinsically brittle ceramics in contact with spheres. Acta Mater. 47, 4711 (1999)

    Article  CAS  Google Scholar 

  13. R.V. Mesquita, D. Axmann, A. Geis-Gerstorfer Dynamic visco-eleastic properties of dental composite resins. Dent. Mater. 22, 258 (2006)

    Article  CAS  Google Scholar 

  14. L. Musanje, B.W. Darvell Effects of strain rate and temperature on the mechanical properties of resin composites. Dent. Mater. 20, 750 (2004)

    Article  CAS  Google Scholar 

  15. J. Sabbagh, J. Vreven, G. Leloup Dynamic and static moduli of elasticity of resin-based materials. Dent. Mater. 18, 64 (2002)

    Article  CAS  Google Scholar 

  16. R.F. Cook, M.L. Oyen Nanoindentation behavior and mechanical properties measurement of polymeric materials. Int. J. Mater. Res. 98, 370 (2007)

    Article  CAS  Google Scholar 

  17. M.L. Oyen, R.F. Cook Load–displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003)

    Article  CAS  Google Scholar 

  18. M.L. Oyen, R.F. Cook, J.A. Emerson, N.R. Moody Indentation responses of time-dependent films on stiff substrates. J. Mater. Res. 19, 3120 (2004)

    Article  CAS  Google Scholar 

  19. J. Drummond L. Nanoindentation of dental composites. J. Biomed. Mater. Res. Part B 78, 27 (2006)

    Article  Google Scholar 

  20. W.C. Oliver, G.M. Pharr An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)

    Article  CAS  Google Scholar 

  21. L.T. Drzal, M.J. Rich, M.F. Koenig, P.F. Lloyd Adhesion of graphite fibers to epoxy matrices. 2. The effect of fiber finish. J. Adhes. 16, 133 (1983)

    Article  CAS  Google Scholar 

  22. B.J. Ash, R.W. Siegel, L.S. Schadler Glass-transition temperature behavior of alumina/PMMA nanocomposites. J. Polym. Sci., Part B: Polym. Phys. 42, 4371 (2004)

    Article  CAS  Google Scholar 

  23. P. Somasundaran, T.Y. Chen, D. Sarkar A novel processing scheme for core-shell nano composites using controlled polymer adsorption. Mater. Res. Innovations 2, 325 (1999)

    Article  CAS  Google Scholar 

  24. C. Leger, H.D.L. Lira, R. Paterson Preparation and properties of surface modified ceramic membranes. Part III. Gas permeation of 5 nm alumina membranes modified by trichloro-octadecylsilane. J. Membr. Sci. 120, 187 (1996)

    Article  CAS  Google Scholar 

  25. F. Mammeri, Le E. Bourhis, L. Rozes, C. Sanchez, A. Huignard, D. Lefevre Time, dependence of the indentation behavior of hybrid coatings. J. Non-Cryst. Solids 345–346, 610 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel K. Lloyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Lloyd, I.K. Time-dependent nanoindentation behavior of high elastic modulus dental resin composites. Journal of Materials Research 25, 529–536 (2010). https://doi.org/10.1557/JMR.2010.0070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0070

Navigation