Skip to main content
Log in

Effects of nanoparticle size and content on mechanical properties of dental nanocomposites: experimental versus modeling

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Mechanical properties of an experimental dental composite filled with spherical silica nanoparticles, in two different particle sizes, were investigated. The experimental results of elastic modulus and strength of the composites were compared with the prediction of models. Amorphous silica nanoparticles (ASN) with primary particle sizes of 12 nm (ASN12) and 40 nm (ASN40) were surface treated by 3-(methacryloxypropyl) trimethoxysilane (γ-MPS). Surface treatment of the particles was examined by FTIR spectroscopy and TGA. The composites were prepared by incorporating of the silanized ASN12 or ASN40 particles in different percentages into a mixture of 2,2-bis-[4-(2-hydroxy-3-methacryloyloxy-propoxy)phenyl]-propane (bis-GMA), triethyleneglycol dimethacrylate and a photoinitiator system. The pastes were transferred into the molds and light-cured. Diametral tensile strength (DTS), flexural strength and flexural modulus of the composites were then determined. The cross-section area of the fractured specimens and dispersion pattern of the fillers throughout the resin matrix were studied by SEM and TEM, respectively. Data were analyzed and compared using ANOVA and Tukey’s HSD tests at a significance level of 0.05. An increasing trend was observed in the flexural modulus of the composites as a function of their filler content. The same trend, however, was not observed for DTS and flexural strength properties. At the same filler fraction, the nanocomposites containing ASN12 showed significantly higher modulus than the nanocomposites filled with ASN40. The models which have been developed for prediction of modulus in the composites with rigid particle in non-rigid matrix fitted better with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xia Y, Zhang F, Xie H, Gu N (2008) Nanoparticle-reinforced resin-based dental composites. J Dentistry 36:450–455

    Article  CAS  Google Scholar 

  2. Foroutan F, Javadpou J, Atai M, Rezaie H (2011) Mechanical properties of dental composite materials reinforced with micro and nano-size Al2O3 filler particles. Iran J Mater Sci Eng 8:25–33

    CAS  Google Scholar 

  3. Tanimoto Y, Kitagawa T, Aida M, Nishiyama N (2006) Experimental and computational approach for evaluating the mechanical characteristics of dental composite resins with various filler sizes. Acta Biomater 2:633–639

    Article  Google Scholar 

  4. Halpin J (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3:732–734

    Google Scholar 

  5. Mitsuhashi A, Hanaoka K, Teranaka T (2003) Fracture toughness of resin-modified glass ionomer restorative materials: effect of powder/liquid ratio and powder particle size reduction on fracture toughness. Dent Mater 19:747–757

    Article  CAS  Google Scholar 

  6. Masouras K, Akhtar R, Watts DC, Silikas N (2008) Effect of filler size and shape on local nanoindentation modulus of resin-composites. J Mater Sci Mater Med 19:3561–3566

    Article  CAS  Google Scholar 

  7. Junior R, Adalberto S, Zanchi CH, Carvalho RVd, Demarco FF (2007) Flexural strength and modulus of elasticity of different types of resin-based composites. Brazil Oral Res 21:16–21

    Article  Google Scholar 

  8. Rahim T, Mohamad D, Ismail AR, Akil HM (2011) Synthesis of nanosilica fillers for experimental dental nanocomposites and their characterisations. J Phys Sci 22:93–105

    CAS  Google Scholar 

  9. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39:933–961

    Article  Google Scholar 

  10. Atai M, Pahlavan A, Moin N (2012) Nano-porous thermally sintered nano silica as novel fillers for dental composites. Dent Mater 28:133–145

    Article  CAS  Google Scholar 

  11. Bourkas G, Prassianakis I, Kytopoulos V, Sideridis E, Younis C (2010) Estimation of elastic moduli of particulate composites by new models and comparison with moduli measured by tension, dynamic, and ultrasonic tests. Adv Mater Sci Eng 2010:891824. doi:10.1155/2010/891824

  12. Mitra SB, Wu D, Holmes BN (2003) An application of nanotechnology in advanced dental materials. J Am Dent Assoc 134:1382–1390

    Article  CAS  Google Scholar 

  13. Beun S, Glorieux T, Devaux J, Vreven J, Leloup G (2007) Characterization of nanofilled compared to universal and microfilled composites. Dent Mater 23:51–59

    Article  CAS  Google Scholar 

  14. Ilie N, Hickel R (2009) Investigations on mechanical behaviour of dental composites. Clin Oral Investig 13:427–438

    Article  Google Scholar 

  15. Kushch VI, Mogilevskaya SG, Stolarski HK, Crouch SL (2013) Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces. Int J Solid Struct 50:1141–1153

    Article  CAS  Google Scholar 

  16. Curtis A, Palin W, Fleming G, Shortall A, Marquis P (2009) The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique. Dent Mater 25:180–187

    Article  CAS  Google Scholar 

  17. Adachi T, Osaki M, Araki W, Kwon S-C (2008) Fracture toughness of nano-and micro-spherical silica-particle-filled epoxy composites. Acta Mater 56:2101–2109

    Article  CAS  Google Scholar 

  18. Pukánszky B, Maurer FH (1995) Composition dependence of the fracture toughness of heterogeneous polymer systems. Polym 36:1617–1625

    Article  Google Scholar 

  19. Antonucci JM, Dickens SH, Fowler BO, Xu HH, McDonough WG (2005) Chemistry of silanes: interfaces in dental polymers and composites. J Res National Inst Stand Technol 110:541–558

    Article  Google Scholar 

  20. Ahmed S, Jones F (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci 25:4933–4942

    Article  CAS  Google Scholar 

  21. Cramer N, Stansbury J, Bowman C (2011) Recent advances and developments in composite dental restorative materials. J Dent Res 90:402–416

    Article  CAS  Google Scholar 

  22. Iso E (2000) 4049 Dentistry-polymer-based filling, restorative and luting materials. International Organization for Standardization, Geneva

    Google Scholar 

  23. Mirmohammadi H, Kleverlaan CJ, Feilzer AJ (2009) Rotating fatigue and flexural strength of direct and indirect resin-composite restorative materials. Am J Dent 22(4):219–222

    Google Scholar 

  24. Junior SAR, Ferracane JL, Bona ÁD (2008) Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3-and 4-point bending tests. Dent Mater 24:426–431

    Article  Google Scholar 

  25. Goyal R, Tiwari A, Negi Y (2008) Microhardness of PEEK/ceramic micro-and nanocomposites: correlation with Halpin-Tsai model. Mater Sci Eng A 491:230–236

    Article  Google Scholar 

  26. Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Miner Mater Charact Eng 9:275–319

    Google Scholar 

  27. Chen M-H, Chen C-R, Hsu S-H, Sun S-P, Su W-F (2006) Low shrinkage light curable nanocomposite for dental restorative material. Dent Mater 22:138–145

    Article  Google Scholar 

  28. Mohsen N, Craig R (1995) Effect of silanation of fillers on their dispersability by monomer systems. J Oral Rehabil 22:183–189

    Article  CAS  Google Scholar 

  29. Ekworapoj P, Magaraphani R, Martin DC (2002) Heat effect on viscosity and curing of light-cured dental resin and mechanical strength of conventional dental composites. J Metal Mater Miner 12:39–50

    CAS  Google Scholar 

  30. Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833–1842

    Article  CAS  Google Scholar 

  31. Einstein A (1956) Investigations on the theory of the Brownian movement. Courier Dover Publications, USA

    Google Scholar 

  32. Hsueh CH, Becher PF (2005) Effective viscosity of suspensions of spheres. J Am Ceramic Soc 88:1046–1049

    Article  CAS  Google Scholar 

  33. Guth E (2004) Theory of filler reinforcement. J Appl Phys 16:20–25

    Article  Google Scholar 

  34. Affdl J, Kardos J (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  35. Kerner EH (1956) The elastic and thermo-elastic properties of composite media. Proc Phys Soc Sec B 69:808

    Article  Google Scholar 

  36. Nakayama WT, Hall DR, Grenoble DE, Katz JL (1974) Elastic properties of dental resin restorative materials. J Dent Res 53:1121–1126

    Article  CAS  Google Scholar 

  37. Nielsen LE (2003) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41:4626–4627

    Article  Google Scholar 

  38. Landel RF, Nielsen LE (1993) Mechanical properties of polymers and composites. CRC Press, USA

    Google Scholar 

  39. Le Bourhis E (2008) Glass: mechanics and technology. Wiley, New York

    Google Scholar 

  40. Mooney M (1951) The viscosity of a concentrated suspension of spherical particles. J Colloid Sci 6:162–170

    Article  CAS  Google Scholar 

  41. Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites 39:933–961

    Article  Google Scholar 

  42. Fu S-Y, Hu X, Yue C-Y (1998) A new model for the transverse modulus of unidirectional fiber composites. J Mater Sci 33:4953–4960

    Article  CAS  Google Scholar 

  43. Counto UJ (1964) The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete. Mag Concrete Res 16:129–138

    Article  Google Scholar 

  44. Ishai O, Cohen L (1967) Elastic properties of filled and porous epoxy composites. Int J Mech Sci 9:539–546

    Article  Google Scholar 

  45. Paul B (1959) Prediction of elastic constants of multi-phase materials. No. TR3. Brown Univ Providence, USA

    Google Scholar 

  46. Danusso F, Tieghi G (1986) Strength versus composition of rigid matrix particulate composites. Polymer 27:1385–1390

    Article  CAS  Google Scholar 

  47. Levita G, Marchetti A, Lazzeri A (1989) Fracture of ultrafine calcium carbonate/polypropylene composites. Polym Compos 10:39–43

    Article  CAS  Google Scholar 

  48. Pukánszky B, Turcsányi B, Tudos F (1988) Effect of interfacial interaction on the tensile yield stress of polymer composites. Interfaces in polymer, ceramic and metal matrix composites. Elsevier, Amsterdam, pp 467–477

    Google Scholar 

  49. Turcsanyi B, Pukanszky B, Tüdõs F (1988) Composition dependence of tensile yield stress in filled polymers. J Mater Sci Lett 7:160–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Samiei and Mr. Ebrahimi in Kooshan Pars Quality Company for their expert technical assistance in mechanical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Atai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barghamadi, H., Atai, M., Imani, M. et al. Effects of nanoparticle size and content on mechanical properties of dental nanocomposites: experimental versus modeling. Iran Polym J 24, 837–848 (2015). https://doi.org/10.1007/s13726-015-0369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0369-5

Keywords

Navigation