Skip to main content
Log in

Thermomechanical properties dependence on chain length in bulk polyethylene: Coarse-grained molecular dynamics simulations

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanical and thermodynamical properties of bulk polyethylene have been scrutinized using coarse-grained (CG) molecular dynamics simulations. Entangled but cross-link-free polymer clusters are generated by the semicrystalline lattice method for a wide range chain length of alkane modeled by CG beads, and tested under compressive and tensile stress with various temperature and strain rates. It has been found that the specific volume and volumetric thermal expansion coefficient decrease with the increase of chain length, where the specific volume is a linear function of the bond number to all bead number ratios, while the thermal expansion coefficient is a linear rational function of the ratio. Glass-transition temperature, however, does not seem to be sensitive to chain length. Yield stress under tension and compression increases with the increase of the bond number to all bead number ratio and strain rate as well as with decreasing temperature. The correlation found between chain length and these physical parameters suggests that the ratio dominates the mechanical properties of the present CG-modeled linear polymer material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Takeuchi, R.J. Roe Molecular dynamics simulation of local chain motion in bulk amorphous polymers. I. Dynamics above the glass transition. J. Chem. Phys. 94, 7446 (1991)

    Article  CAS  Google Scholar 

  2. P.V.K. Pant, J. Han, G.D. Smith, R.H. Boyd A molecular dynamics simulation of polyethylene. J. Chem. Phys. 99, 597 (1993)

    Article  CAS  Google Scholar 

  3. R.H. Boyd, R.H. Gee, J. Han, Y. Jin Conformational dynamics in bulk polyethylene: A molecular dynamics simulation study. J. Chem. Phys. 101, 788 (1994)

    Article  CAS  Google Scholar 

  4. J.R. Hanscomb, Y. Kaahwa High-temperature electrical conduction in polyethylene-terephthalate. II. Analysis. J. Phys. D: Appl. Phys. 12, 579 (1979)

    Article  CAS  Google Scholar 

  5. J.R. Hanscomb, Y. Kaahwa High-field transient conduction in PET in the microsecond-millisecond time range. J. Phys. D: Appl. Phys. 11, 725 (1978)

    Article  CAS  Google Scholar 

  6. A.M. Donald, E.J. Kramer Effect of strain history on craze microstructure. Polymer (Guildf.) 23, 457 (1982)

    Article  CAS  Google Scholar 

  7. A.M. Donald, E.J. Kramer, R.A. Bubeck The entanglement network and craze micromechanics in glassy polymers. J. Polym. Sci., Part B: Polym. Phys. 20, 1129 (1982)

    CAS  Google Scholar 

  8. C. G’sell, J.M. Hiver, A. Dahouin, A. Souahi Video-controlled tensile testing of polymers and metals beyond the necking point. J. Mater. Sci. 27, 5031 (1992)

    Article  Google Scholar 

  9. E.M. Arruda, M.C. Boyce Evolution of plastic anisotropy in amorphous polymers during finite straining. Int. J. Plast. 9, 697 (1993)

    Article  CAS  Google Scholar 

  10. M.C. Boyce, E.M. Arruda, R. Jayachandran The large strain compression, tension, and simple shear of polycarbonate. Polym. Eng. Sci. 34, 716 (1994)

    Article  CAS  Google Scholar 

  11. van H.G.H. Melick, L.E. Govaert, H.E.H. Meijer On the origin of strain hardening in glassy polymers. Polymer (Guildf.) 44, 2493 (2003)

    Article  CAS  Google Scholar 

  12. J.Y. He, Z.L. Zhang, M. Midttun, G. Fonnum, G.I. Modahl, H. Kristiansen, K. Redford Size effect on mechanical properties of micron-sized PS-DVB polymer particles. Polymer (Guildf.) 49, 3993 (2008)

    Article  CAS  Google Scholar 

  13. H. Eyring Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936)

    Article  CAS  Google Scholar 

  14. R.E. Robertson Theory for the plasticity of glassy polymers. J. Chem. Phys. 44, 3950 (1966)

    Article  Google Scholar 

  15. A.S. Argon A theory for the low-temperature plastic deformation of glassy polymers. Philos. Mag. 28, 839 (1973)

    Article  CAS  Google Scholar 

  16. P.D. Wu, van der E. Giessen On improved network models for rubber elasticity and their applications to orientation in glassy polymers. J. Mech. Phys. Solids 41, 427 (1993)

    Article  CAS  Google Scholar 

  17. D. Riby, R.J. Roe Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation. J. Chem. Phys. 89, 5280 (1988)

    Article  Google Scholar 

  18. P.G. Whitten, H.R. Brown Polymer entanglement density and its influence on interfacial friction. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 76, 026101 (2007)

    Article  CAS  Google Scholar 

  19. A.V. Lyulin, N.K. Balabaev, M.A.J. Michels Correlated segmental dynamics in amorphous atactic polystyrene: A molecular dynamics simulation study. Macromolecules 35, 9595 (2002)

    Article  CAS  Google Scholar 

  20. van der N.F.A. Vegt, W.J. Briels, M. Wessling, H. Strathmann Free energy calculations of small molecules in dense amorphous polymers. Effect of the initial guess configuration in molecular dynamics studies. J. Chem. Phys. 105, 8849 (1996)

    Article  Google Scholar 

  21. R.M. Sok, H.J.C. Berendsen Time-dependent self-diffusion in a semidilute suspension of Brownian particles. J. Chem. Phys. 96, 4699 (1992)

    Article  CAS  Google Scholar 

  22. F. Zhang Molecular-dynamics simulation of solitary waves in polyethylene. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 56, 6077 (1997)

    Article  CAS  Google Scholar 

  23. F.M. Capaldi, M.C. Boyce, G.C. Rutledge Molecular response of a glassy polymer to active deformation. Polymer (Guildf.) 45, 1391 (2004)

    Article  CAS  Google Scholar 

  24. S. Nielsen, C.F. Lopez, G. Srinivas, M.L. Klein A coarse grain model for n-alkanes parameterized from surface tension data. J. Chem. Phys. 119, 7043 (2003)

    Article  CAS  Google Scholar 

  25. A.A. Louis Beware of density dependent pair potentials. J. Phys. Condens. Matter 14, 9187 (2002)

    Article  CAS  Google Scholar 

  26. R.L.C. Akkermans, W.J. Briels A structure-based coarse-grained model for polymer melts. J. Chem. Phys. 114, 1020 (2001)

    Article  CAS  Google Scholar 

  27. M. Zhang, F. Müller-Plathe The Soret effect in dilute polymer solutions: Influence of chain length, chain stiffness and solvent quality. J. Chem. Phys. 125, 124903 (2006)

    Article  CAS  Google Scholar 

  28. Di A. Matteo, F. Müller-Plathe, G. Milano From mesoscale back to atomistic models: A fast reverse-mapping procedure for vinyl polymer chains. J. Phys. Chem. B 111, 2765 (2007)

    Article  CAS  Google Scholar 

  29. T. Terao, E. Lussetti, F. Müller-Plathe Non-equilibrium molecular dynamics methods for computing the thermal conductivity: Application to amorphous polymers. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 75, 057701 (2007)

    Article  CAS  Google Scholar 

  30. M. Fermeglia, S. Pricl Multiscale modeling for polymer systems of industrial interest. Prog. Org. Coat. 58, 187 (2007)

    Article  CAS  Google Scholar 

  31. S. Pricl, M. Fermeglia, M. Ferrone, A. Asquini Scaling properties in the molecular structure of three-dimensional, nanosized phenylene-based dendrimers as studied by atomistic molecular dynamics simulations. Carbon 41, 2269 (2003)

    Article  CAS  Google Scholar 

  32. C.D. Wick, D.N. Theodorou Connectivity-altering Monte Carlo simulations of the end group effects on volumetric properties for poly(ethylene oxide). Macromolecules 37, 7026 (2004)

    Article  CAS  Google Scholar 

  33. J.L. Faulon Stochastic generator of chemical structure. (4) Building polymeric systems with specified properties. J. Comput. Chem. 22, 580 (2001)

    Article  CAS  Google Scholar 

  34. W. Shinoda, R. Devane, M.L. Klein Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants. Mol. Simul. 33, 27 (2007)

    Article  CAS  Google Scholar 

  35. H.J.C. Beredsen, J.P.M. Postma, van W.F. Gunsteren, A. Dinola, J.R. Haak Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984)

    Article  Google Scholar 

  36. H. Takeuchi, R.J. Roe Molecular dynamics simulation of local chain motion in bulk amorphous polymers. II. Dynamics at glass transition. J. Chem. Phys. 94, 7458 (1991)

    Article  CAS  Google Scholar 

  37. S. Plimpton Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    Article  CAS  Google Scholar 

  38. M.M. Rudek, J.A. Fisk, V.M. Chakarov, J.L. Katz Condensation of a supersaturated vapor. XII. The homogeneous nucleation of the n-alkanes. J. Chem. Phys. 105, 4707 (1996)

    Article  CAS  Google Scholar 

  39. M. Laso, E.A. Perpete Multiscale Modelling of Polymer Properties (Elsevier, Amsterdam, The Netherlands 2006) 31–45

    Google Scholar 

  40. G.T. Dee, T. Ougizawa, D.J. Walsh The pressure-volume-temperature properties of polyethylene, poly(dimethyl siloxane), poly(ethylene glycol) and poly(propylene glycol) as a function of molecular weight. Polymer (Guildf.) 33, 3462 (1992)

    Article  CAS  Google Scholar 

  41. D.L. Turcotte, G. Schubert Geodynamics 2nd ed (Cambridge University Press, Cambridge 2002)

    Book  Google Scholar 

  42. J. Han, R.H. Gee, R.H. Boyd Glass transition temperatures of polymers from molecular dynamics simulations. Macromolecules 27, 7781 (1994)

    Article  CAS  Google Scholar 

  43. R.H. Gee, R.H. Boyd The role of the torsional potential in relaxation dynamics: A molecular dynamics study of polyethylene. Comput. Theor. Polym. Sci. 8, 93 (1998)

    Article  CAS  Google Scholar 

  44. C.A. Angell, J.H.R. Clarke, L.V. Woodcock Advances in Chemical Physics Vol. 48 edited by I. Prigogine and S.A. Rice (Wiley, New York 1981) 397

    CAS  Google Scholar 

  45. F. Signorini, J.L. Barrat, M.L. Klein Structural relaxation and dynamical correlations in a molten state near the liquid–glass transition: A molecular dynamics study. J. Chem. Phys. 92, 1294 (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiliang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Nagao, S. & Zhang, Z. Thermomechanical properties dependence on chain length in bulk polyethylene: Coarse-grained molecular dynamics simulations. Journal of Materials Research 25, 537–544 (2010). https://doi.org/10.1557/JMR.2010.0061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0061

Navigation