Skip to main content
Log in

Coarse-grained polyethylene: Including cross terms in bonded interactions and introducing anisotropy into the model for the orthorhombic crystal

  • Theory and Simulation
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Our previous paper (E.A. Zubova, I.A. Strelnikov, N.K. Balabaev, A.V. Savin, M.A. Mazo, and L.I. Manevich, Polym. Sci., Ser. A 59 (1) (2017)) addressed the simplest coarse-grained model of polyethylene and alkanes. The CH2 group in this united-atom model is replaced with a bead. In the framework of the model, nonbonded interactions are described by the Lennard-Jones potential (6–12), whereas the potential for bonded interactions accounts for the bonds between beads and for coarse grained angles and dihedral angles but not for the cross terms between them. We found the area of geometrical parameters of the model where all the three known crystalline phases of polyethylene are stable at low temperatures. We parametrized the force field of the model using the dynamic properties of the system, namely, the inelastic neutron scattering spectrum of the orthorhombic phase of polyethylene. However, the simplest model underestimates the value of the elastic modulus along the chains of the crystal by a factor of two. The derived setting angle of the molecules also differs appreciably from the experimental data. Moreover, the acoustic dispersion curves for the modes with the wave vector directed along the chain axis deviate from the experimental data at low frequencies. In the present study, we included the cross terms into the bonded interactions. This made it possible to reproduce the experimental elastic modulus along the chains of the crystal and to decrease the frequency range for the optical skeletal dispersion curve to proper values. As for the beads, we separated force centers for the bonded and nonbonded interactions, which enabled us to reproduce the optical skeletal curve and to bring the anisotropy of interchain interactions in line with the experiment. However, the model fails to reproduce the balance of interactions between the neighboring chains in the crystal. For this, a different form of the potential energy of van der Waals interactions seems to be needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Pütz, J. G. Curro, and G. S. Grest, J. Chem. Phys. 114, 2847 (2001).

    Article  Google Scholar 

  2. H. A. Karimi-Varzaneh, N. F. A. van der Vegt, F. Müller-Plathe, and P. Carbone, ChemPhysChem 13, 3428 (2012).

    Article  CAS  Google Scholar 

  3. X. Li and R. A. Latour, Polymer 50, 4139 (2009).

    Article  CAS  Google Scholar 

  4. E. A. Zubova, I. A. Strelnikov, N. K. Balabaev, A. V. Savin, M. A. Mazo, and L. I. Manevich, Polym. Sci., Ser. A 59 (1) (2017).

    Google Scholar 

  5. J. Perez-Pellitero, E. Bourasseau, I. Demachy, J. Ridard, Ph. Ungerer, and A. Mackie, J. Phys. Chem. B 112, 9853 (2008).

    Article  CAS  Google Scholar 

  6. Z. Cao and G. A. Voth, J. Chem. Phys. 143, 243116 (2015).

    Article  Google Scholar 

  7. S. Toxvaerd, J. Chem. Phys. 107, 5197 (1997).

    Article  CAS  Google Scholar 

  8. C. Nieto-Draghi and P. Ungerer, J. Chem. Phys. 125, 044517 (2006).

    Article  Google Scholar 

  9. E. Bourasseau, M. Haboudou, A. Boutin, A. Fuchs, and Ph. Ungerer, J. Chem. Phys. 118, 3020 (2003).

    Article  CAS  Google Scholar 

  10. N. Ferrando, V. Lachet, J. M. Teuler, and A. Boutin, J. Phys. Chem. B 113, 5985 (2003).

    Article  Google Scholar 

  11. Y. Boutard, P. Ungerer, J. M. Teuler, M. G. Ahunbay, S. F. Sabater, J. Perez-Pellitero, A. D. Mackie, and E. Bourasseau, Fluid Phase Equilib. 236, 25 (2005).

    Article  CAS  Google Scholar 

  12. M. K. Hadj-Kali, V. Gerbaud, X. Joulia, C. Lacaze-Dufaure, C. Mijoule, and Ph. Ungerer, J. Mol. Model. 14, 571 (2008).

    Article  CAS  Google Scholar 

  13. J. Delhommelle, C. Tschirwitz, P. Ungerer, G. Granucci, P. Millie, D. Pattou, and A. H. Fuchs, J. Phys. Chem. B 104, 4745 (2000).

    Article  CAS  Google Scholar 

  14. S. Kranias, D. Pattou, and B. Lévy, Phys. Chem. Chem. Phys. 5, 4175 (2003).

    Article  CAS  Google Scholar 

  15. C. Nieto-Draghi, P. Bonnaud, and P. Ungerer, J. Phys. Chem. C 111, 15686 (2007).

    Article  CAS  Google Scholar 

  16. B. Creton, T. de Bruin, V. Lachet, and C. Nieto-Draghi, J. Phys. Chem. B 114, 6522 (2010).

    Article  CAS  Google Scholar 

  17. N. Ferrando, V. Lachet, and A. Boutin, J. Phys. Chem. B 116, 3239 (2012).

    Article  CAS  Google Scholar 

  18. P. Depa, C. Chen, and J. K. Maranas, J. Chem. Phys. 134, 014903 (2011).

    Article  Google Scholar 

  19. D. Fritz, K. Koschke, V. A. Harmandaris, N. F. A. van der Vegt, and K. Kremer, Phys. Chem. Chem. Phys. 13, 10412 (2011).

    Article  CAS  Google Scholar 

  20. K. M. Salerno, A. Agrawal, D. Perahia, and G. S. Grest, Phys. Rev. Lett. 116, 058302 (2016).

    Article  Google Scholar 

  21. E. Brini, E. A. Algaer, P. Ganguly, C. L. Li, F. Rodriguez-Ropero, and N. F. A. van der Vegt, Soft Matter 9, 2108 (2013).

    Article  CAS  Google Scholar 

  22. U. Dinur and A. T. Hagler, in Reviews in Computational Chemistry, Ed. by K. B. Lipkowitz and D. B. Boyd (Wiley, Hoboken, 1991), Vol. 2, p.99.

    Article  CAS  Google Scholar 

  23. L. Monticelli and D. P. Tieleman, “Force Fields for Classical Molecular Dynamics,” in Biomolecular Simulations: Methods and Protocols, Ed. by L. Monticelli and E. Salonen (Humana Press, New York, 2012), Vol. 924, p.197.

    Article  Google Scholar 

  24. K. Palmo, B. Mannfors, N. G. Mirkin, and S. Krimm, Biopolymers 68, 383 (2003).

    Article  CAS  Google Scholar 

  25. O. Ermer and S. Lifson, J. Am. Chem. Soc. 95, 4121 (1973).

    Article  CAS  Google Scholar 

  26. N. L. Allinger, Y. H. Yuh, and J. H. Lii, J. Am. Chem. Soc. 111, 8551 (1989).

    Article  CAS  Google Scholar 

  27. N. Karasawa, S. Dasgupta, and W. A. Goddard, J. Chem. Phys. 95, 2260 (1991).

    Article  CAS  Google Scholar 

  28. J. R. Maple, M. J. Hwang, T. P. Stockfisch, U. Dinur, M. Waldman, C. S. Ewig, and A. T. Hagler, J. Comput. Chem. 15, 162 (1994).

    Article  CAS  Google Scholar 

  29. J. L. M. Dillen, J. Comput. Chem. 16, 595 (1995).

    Article  CAS  Google Scholar 

  30. N. L. Allinger, K. Chen, and J. Lii, J. Comput. Chem. 17, 642 (1996).

    Article  CAS  Google Scholar 

  31. A. T. Hagler, J. Chem. Theory Comput 11, 5555 (2015).

    Article  CAS  Google Scholar 

  32. I. A. Strelnikov, M. A. Mazo, E. A. Zubova, L. I. Manevich, C. O. Sarkisyan, and A. A. Berlin, Vestn. TvGU, Ser. Khim., No. 1, 33 (2016).

    Google Scholar 

  33. S. F. Parker, J. Chem. Soc., Faraday Trans. 92 (11), 1941 (1996).

    Article  CAS  Google Scholar 

  34. R. G. Snyder and J. H. Schachtschneider, Spectrochim. Acta 19, 85 (1963).

    Article  CAS  Google Scholar 

  35. W. Myers, G. C. Summerfield, and J. S. King, J. Chem. Phys. 44, 184 (1966).

    Article  CAS  Google Scholar 

  36. G. Avitabile, R. Napolitano, B. Pirozzi, K. D. Rouse, M. W. Thomas, and B. T. M. Willis, J. Polym. Sci., Part C: Polym. Lett. 13, 351 (1970).

    Google Scholar 

  37. S. Kavesh and J. M. Schultz, J. Polym. Sci., Polym. Phys. Ed. 8, 243 (1970).

    CAS  Google Scholar 

  38. P. Li, L. Hu, A. J. H. McGaughey, and S. Shen, Adv. Mater. 26, 1065 (2014).

    Article  CAS  Google Scholar 

  39. T. N. Wassermann, J. Thelemann, P. Zielke, and M. A. Suhm, J. Chem. Phys. 131, 161108 (2009).

    Article  Google Scholar 

  40. R. T. Harley, W. Hayes, and J. F. Twisleton, J. Phys. C 6, L167 (1973).

    Article  CAS  Google Scholar 

  41. G. D. Dean and D. H. Martin, Chem. Phys. Lett. 1, 415 (1967).

    Article  CAS  Google Scholar 

  42. F. J. Boerio and J. L. Koenig, J. Chem. Phys. 52, 3425 (1970).

    Article  CAS  Google Scholar 

  43. H. Berghmans, G. J. Safford, and P. S. Leung, J. Polym. Sci. 9, 1219 (1971).

    Article  CAS  Google Scholar 

  44. J. Barnes and B. Fanconi, J. Phys. Chem. Ref. Data 7 (4), 1309 (1978).

    Article  CAS  Google Scholar 

  45. A. A. Berlin, L. I. Manevich, S. O. Sargsyan, and S. A. Timan, Doklady Physical Chemistry (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Zubova.

Additional information

Original Russian Text © I.A. Strelnikov, E.A. Zubova, M.A. Mazo, L.I. Manevich, 2017, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2017, Vol. 59, No. 2, pp. 179–190.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strelnikov, I.A., Zubova, E.A., Mazo, M.A. et al. Coarse-grained polyethylene: Including cross terms in bonded interactions and introducing anisotropy into the model for the orthorhombic crystal. Polym. Sci. Ser. A 59, 242–252 (2017). https://doi.org/10.1134/S0965545X17020092

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X17020092

Navigation