Skip to main content
Log in

Kinetics of intermetallic compound layers and Cu dissolution at Sn1.5Cu/Cu interface under high magnetic field

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The kinetics of intermetallic compound (IMC) layer and Cu dissolution at Sn1.5Cu/Cu interface under high magnetic field was experimentally examined. It is found that the IMC layer growth is controlled by flux-driven ripening process. The high magnetic field promotes the growth of IMC layer, retards the dissolution of Cu substrate, and decreases the content of Cu solute at the liquid–IMC interface front. Based on the experimental results, it is considered that the magnetization induced by magnetic field promotes the ripening process for IMC layer growth. The Lorentz force dampening the convection and magnetization decreasing the Cu solubility limit can retard the Cu dissolution and change the solute distribution at the liquid–IMC interface front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J-W Yoon, J-H Lim, H-J Lee, J. Joo, S-B Jung, W-C Moon Interfacial reactions and joint strength of Sn–37Pb and Sn–3.5Ag solders with immersion Ag-plated Cu substrate during aging at 150 °C. J. Mater. Res. 21, 3196 (2006)

    Article  CAS  Google Scholar 

  2. J. Zhao, C-Q Cheng, L. Qi, C-Y Chi Kinetics of intermetallic compound layers and shear strength in Bi-bearing SnAgCu/Cu soldering couples. J. Alloys Compd. 473, 382 (2009)

    Article  CAS  Google Scholar 

  3. Z-F Li, J. Dong, X-Q Zeng, C. Lu, W-J Ding, Z-M Ren Influence of strong static magnetic field on intermediate phase growth in Mg–Al diffusion couple. J. Alloys Compd. 440, 132 (2007)

    Article  CAS  Google Scholar 

  4. X. Ren, G-Q Chen, W-L Zhou, C-W Wu, J-S Zhang Effect of high magnetic field on intermetallic phase growth in Ni–Al diffusion couples. J. Alloys Compd. 472, 525 (2009)

    Article  CAS  Google Scholar 

  5. Q. Wang, D-G Li, K. Wang, Z-Y Wang, J-C He Effects of high uniform magnetic fields on diffusion behavior at the Cu/Al solid/liquid interface. Scr. Mater. 56, 485 (2007)

    Article  CAS  Google Scholar 

  6. D-G Li, Q. Wang, T. Liu, G-J Li, J-C He Growth of diffusion layers at liquid Al–solid Cu interface under uniform and gradient high magnetic field conditions. Mater. Chem. Phys. 117, 504 (2009)

    Article  CAS  Google Scholar 

  7. D-G Li, Q. Wang, G-J Li, T. Liu, J-C He High magnetic field controlled interdiffusion behavior at Bi–Bi0.4Sb0.6 liquid/solid interface. J. Mater. Sci. 44, 1918 (2009)

    Article  CAS  Google Scholar 

  8. J. Zhao, P. Yang, F. Zhu, C-Q Cheng The effect of high magnetic field on the growth behavior of Sn–3Ag–0.5Cu/Cu IMC layer. Scr. Mater. 54, 1077 (2006)

    Article  CAS  Google Scholar 

  9. C-Q Cheng, J. Zhao, Y. Xu Effect of high magnetic field on the morphology of (Cu, Ni)6Sn5 at Sn0.3Ni/Cu interface. Mater. Lett. 63, 1478 (2009)

    Article  CAS  Google Scholar 

  10. T. Laurila, V. Vuorinen, J-K Kivilahti Interfacial reactions between lead-free solders and common base materials. Mater. Sci. Eng., R 49, 1 (2005)

    Article  Google Scholar 

  11. A-M Gusak, K-N Tu Kinetic theory of flux-driven ripening. Phys. Rev. B 66, 115403 (2002)

    Article  Google Scholar 

  12. M-L Huang, T. Loeher, A. Ostman, H. Reichl Role of Cu in dissolution kinetics of Cu metallization in molten Sn-based solders. Appl. Phys. Lett. 86, 181908 (2005)

    Article  Google Scholar 

  13. V.I. Dybkov Growth Kinetics of Chemical Compound Layers 1st ed (Cambridge International Science Publishing, Cambridge, England 1998) 135–138

    Google Scholar 

  14. Y-Y Khine, R-M Banish, Alexander J-I-D. Convective contamination in self-diffusivity experiments with an applied magnetic field. J. Cryst. Growth 250, 274 (2003)

    Article  CAS  Google Scholar 

  15. G-M Oreper, J. Szekely The effect of a magnetic field on transport phenomena in a Bridgman–Stockbarger crystal growth. J. Cryst. Growth 67, 405 (1984)

    Article  CAS  Google Scholar 

  16. J. Eckert, J-C Holzer, C-E Krill III, W-L Johnson Mechanically driven alloying and grain-size changes in nanocrystalline Fe–Cu powders. J. Appl. Phys. 73, 2794 (1993)

    Article  CAS  Google Scholar 

  17. D-A Porter, K-E Easterling, M-Y Sherif Phase Transformations in Metals and Alloys 3rd ed (CRC Press, Boca Raton, FL, London 2008) 39

    Google Scholar 

  18. J-K Choi, H. Ohtsuka, Y. Xu, W-Y Choo Effects of a strong magnetic field on the phase stability of plain carbon steels. Scr. Mater. 43, 221 (2000)

    Article  CAS  Google Scholar 

  19. H. Matsushima, D. Kiuchi, Y. Fukunaka Measurement of dissolved hydrogen supersaturation during water electrolysis in a magnetic field. Electrochim. Acta 54, 5858 (2009)

    Article  CAS  Google Scholar 

  20. X. Li, Y. Fautrelle, Z-M Ren, A. Gagnoud, R. Moreau, Y-D Zhang, C. Esling Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification. Acta Mater. 57, 1689 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Cq., Zhao, J. & Xu, Y. Kinetics of intermetallic compound layers and Cu dissolution at Sn1.5Cu/Cu interface under high magnetic field. Journal of Materials Research 25, 359–367 (2010). https://doi.org/10.1557/JMR.2010.0055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0055

Navigation