Skip to main content
Log in

Dual-phase nanocrystalline Ni–Co alloy with high strength and enhanced ductility

  • Materials Communication
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A dual-phase (DP) Ni–66.7%Co alloy with an average grain size of 16 nm was fabricated by electrodeposition. It exhibited an ultimate tensile strength of 1800–2080 MPa, together with an elongation to failure of 10–15% at room temperature. The remarkable ductility of this DP alloy with critical scale grains was attributed to its sustained high rate of strain hardening. Its fracture surface showed an unexpected deeply dimpled structure similar to that of coarse-grained ductile materials, which also witnesses the improved ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Koch, D.G. Morris, K. Lu, A. Inoue Ductility of nanostructured materials. MRS Bull. 24, 54 (1999)

    Article  CAS  Google Scholar 

  2. K.S. Kumar, Van H. Swygenhoven, S. Suresh Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003)

    Article  CAS  Google Scholar 

  3. Y.M. Wang, S. Cheng, Q.M. Wei, E. Ma, T.G. Nieh, A. Hamza Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scr. Mater. 51, 1023 (2004)

    Article  CAS  Google Scholar 

  4. C.C. Koch Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657 (2003)

    Article  CAS  Google Scholar 

  5. Y.T. Zhu, X.Z. Liao Nanostructured metals: Retaining ductility. Nat. Mater. 3, 351 (2004)

    Article  CAS  Google Scholar 

  6. R.Z. Valiev Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004)

    Article  CAS  Google Scholar 

  7. L. Lu, R. Schuaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005)

    Article  CAS  Google Scholar 

  8. L. Lu, X. Chen, X. Huang, K. Lu Revealing the maximum strength in nanotwined copper. Science 323, 607 (2009)

    Article  CAS  Google Scholar 

  9. X.X. Shen, J.S. Lian, Z.H. Jiang, Q. Jiang The optimal grain size nanocrystalline Ni with high strength and good ductility fabricated by a direct current electrodeposition. Adv. Eng. Mater. 10, 539 (2008)

    Article  CAS  Google Scholar 

  10. Y.M. Wang, E. Ma Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 52, 1699 (2004)

    Article  CAS  Google Scholar 

  11. Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280 (2006)

    Article  CAS  Google Scholar 

  12. S. Cheng, H. Choo, Y.H. Zhao, X.L. Wang, Y.T. Zhu, Y.D. Wang, J. Almer, P.K. Liaw, J.E. Jin, Y.K. Lee High ductility of ultrafine-grained steel via phase transformation. J. Mater. Res. 23, 1578 (2008)

    Article  CAS  Google Scholar 

  13. H.Q. Li, F. Ebrahimi Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl. Phys. Lett. 84, 4307 (2004)

    Article  CAS  Google Scholar 

  14. C.D. Gu, J.S. Lian, Z.H. Jiang High strength nanocrystalline Ni–Co alloy with enhanced tensile ductility. Adv. Eng. Mater. 8, 252 (2006)

    Article  CAS  Google Scholar 

  15. Y.N. Liu, H. Yang, Y. Liu, B.H. Jiang, J. Ding, R. Woodward Thermally induced fcc–hcp martensitic transformation in Co–Ni. Acta Mater. 53, 3625 (2005)

    Article  CAS  Google Scholar 

  16. dalla F. Torre, Van H. Swygenhoven, M. Victoria Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002)

    Article  Google Scholar 

  17. A.A. Karimpoor, U. Erb, K.T. Aust, G. Palumbo High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 53, 887 (2005)

    Article  Google Scholar 

  18. S. Cheng, E. Ma, Y.M. Wang, L.J. Kecskes, K.M. Youssef, C.C. Koch, U.P. Trociewitz, K. Han Tensile properties of in situ consolidated nanocrystalline Cu. Acta Mater. 53, 1521 (2005)

    Article  CAS  Google Scholar 

  19. Y.M. Wang, E. Ma On the origin of ultrahigh cryogenic strength of nanocrystalline metals. Appl. Phys. Lett. 85, 2750 (2004)

    Article  CAS  Google Scholar 

  20. Q. Wei Strain rate effects in the ultrafine grain nanocrystalline regimes—Influence on some constitutive response. J. Mater. Sci. 42, 1709 (2007)

    Article  CAS  Google Scholar 

  21. Y.H. Zhao, Y.Z. Guo, Q. Wei, A.M. Dangelewicz, C. Xu, Y.T. Zhu, T.G. Langdon, Y.Z. Zhou, E.J. Lavernia Influence of specimen dimensions on the tensile behavior of ultrafine-grain Cu. Scr. Mater. 59, 627 (2008)

    Article  CAS  Google Scholar 

  22. F. Ebrahimi, Z. Ahmed, H.Q. Li Effect of stacking fault energy on plastic deformation of nanocrystalline face-centered cubic metals. Appl. Phys. Lett. 85, 3749 (2004)

    Article  CAS  Google Scholar 

  23. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004)

    Article  CAS  Google Scholar 

  24. K. Lu, L. Lu, S. Suresh Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349 (2009)

    Article  CAS  Google Scholar 

  25. X.H. Chen, L. Lu Work hardening of ultrafine-grained copper with nanoscale twins. Scr. Mater. 57, 133 (2007)

    Article  CAS  Google Scholar 

  26. M.K. Youssef, R.O. Scattergoog, K.L. Murty, J.A. Horton, C.C. Koch Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 (2005)

    Article  Google Scholar 

  27. I.A. Ovid’ko, A.G. Sheineman Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90, 171927 (2007)

    Article  Google Scholar 

  28. H.Q. Li, F. Ebrahimi Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17, 1969 (2005)

    Article  CAS  Google Scholar 

  29. A. Hasnaoui, Van H. Swygenhoven, P.M. Derlet Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 300, 1550 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, L., Lian, J., Jiang, Z. et al. Dual-phase nanocrystalline Ni–Co alloy with high strength and enhanced ductility. Journal of Materials Research 25, 401–405 (2010). https://doi.org/10.1557/JMR.2010.0048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0048

Navigation