Skip to main content
Log in

Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Given the limitations of the materials available for photoelectrochemical water splitting, a multiphoton (tandem) approach is required to convert solar energy into hydrogen efficiently and durably. Here we investigate a promising system consisting of a hematite photoanode in combination with dye-sensitized solar cells with newly developed organic dyes, such as the squaraine dye, which permit new configurations of this tandem system. Three configurations were investigated: two side-by-side dye cells behind a semitransparent hematite photoanode, two semitransparent dye sensitized solar cells (DSCs) in front of the hematite, and a trilevel hematite/DSC/DSC architecture. Based on the current-voltage curves of state-of-the-art devices made in our laboratories, we found the trilevel tandem architecture (hematite/SQ1 dye/N749 dye) produces the highest operating current density and thus the highest expected solar-to-hydrogen efficiency (1.36% compared with 1.16% with the standard back DSC case and 0.76% for the front DSC case). Further investigation into the wavelength-dependent quantum efficiency of each component revealed that in each case photons lost as a result of scattering and reflection reduce the performance from the expected 3.3% based on the nanostructured hematite photoanodes. We further suggest avenues for the improvement of each configuration from both the DSC and the photoanode parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  2. O. Khaselev, J.A. Turner A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998)

    Article  CAS  Google Scholar 

  3. B.D. Alexander, P.J. Kulesza, L. Rutkowska, R. Solarska, J. Augustynski Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298 (2008)

    Article  CAS  Google Scholar 

  4. van de R. Krol, Y.Q. Liang, J. Schoonman Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311 (2008)

    Article  Google Scholar 

  5. M. Gratzel Photoelectrochemical cells. Nature 414, 338 (2001)

    Article  CAS  Google Scholar 

  6. M.F. Weber, M.J. Dignam Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 131, 1258 (1984)

    Article  CAS  Google Scholar 

  7. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999 (2006)

    Article  CAS  Google Scholar 

  8. A. Kay, I. Cesar, M. Gratzel New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006)

    Article  CAS  Google Scholar 

  9. J. Augustynski, G. Calzaferri, J.C. Courvoisier, M. Gratzel Photoelectrochemical hydrogen production: State of the art with special reference to IEA’s hydrogen programme 11th World Hydrogen Energy Conference (11 WHEC) edited by T.N. Veziroglu, C.J. Winter, J.P. Baselt, and G. Kreysa (Dechema, Stuttgart, Germany 1996) 2379

    Google Scholar 

  10. A. Duret, M. Gratzel Visible light-induced water oxidation on mesoscopic a-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184 (2005)

    Article  CAS  Google Scholar 

  11. M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, Humphry-R. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Gratzel Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613 (2001)

    Article  CAS  Google Scholar 

  12. H. Arakawa, C. Shiraishi, M. Tatemoto, H. Kishida, D. Usui, A. Suma, A. Takamisawa, T. Yamaguchi Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell. Solar Hydrogen and Nanotechnology II 65003, 65003 (2007)

    Google Scholar 

  13. J.H. Yum, P. Walter, S. Huber, D. Rentsch, T. Geiger, F. Nuesch, De F. Angelis, M. Gratzel, M.K. Nazeeruddin Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. J. Am. Chem. Soc. 129, 10320 (2007)

    Article  CAS  Google Scholar 

  14. T. Bessho, E. Yoneda, J-H Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M.K. Nazeeruddin, M. Gratzel New paradigm in molecular engineering of sensitizers for solar cell applications. J. Am. Chem. Soc. 131, 5930 (2009)

    Article  CAS  Google Scholar 

  15. Standard tables for reference solar spectral irradiances Direct normal and hemispherical on 37° tilted surface. G 173-03 Annual Book of ASTM Standards (ASTM International, West Conshohocken, PA 2003)

  16. L.M. Peter Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phys. 9, 2630 (2007)

    Article  CAS  Google Scholar 

  17. S. Ito, S.M. Zakeeruddin, P. Comte, P. Liska, D.B. Kuang, M. Gratzel Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nat. Photonics 2, 693 (2008)

    Article  CAS  Google Scholar 

  18. A. Mihi, M.E. Calvo, J.A. Anta, H. Miguez Spectral response of opal-based dye-sensitized solar cells. J. Phys. Chem. C 112, 13 (2008)

    Article  CAS  Google Scholar 

  19. A. Devos Detailed balance limit of the efficiency of tandem solar-cells. J. Phys. D 13, 839 (1980)

    Article  Google Scholar 

  20. M.K. Nazeeruddin, Humphry-R. Baker, P. Liska, M. Gratzel Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B 107, 8981 (2003)

    Article  CAS  Google Scholar 

  21. M. Durr, A. Bamedi, A. Yasuda, G. Nelles Tandem dye-sensitized solar cell for improved power conversion efficiencies. Appl. Phys. Lett. 84, 3397 (2004)

    Article  CAS  Google Scholar 

  22. I. Cesar, K. Sivula, A. Kay, R. Zboril, M. Gratzel Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772 (2009)

    Article  CAS  Google Scholar 

  23. Y-S Hu, Kleiman-A. Shwarsctein, G.D. Stucky, E.W. McFarland Improved photoelectrochemical performance of Ti-doped a-Fe2O3 thin films by surface modification with fluoride. Chem. Commun. 19, 2652 (2009)

    Article  Google Scholar 

  24. D.K. Zhong, J. Sun, H. Inumaru, D.R. Gamelin Solar water oxidation by composite catalyst/a-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Sivula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brillet, J., Cornuz, M., Formal, F.L. et al. Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting. Journal of Materials Research 25, 17–24 (2010). https://doi.org/10.1557/JMR.2010.0009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0009

Navigation