Skip to main content

Rational Engineering of Photocathodes for Hydrogen Production: Heterostructure, Dye-Sensitized, Perovskite, and Tandem Cells

  • Chapter
  • First Online:
Chemically Deposited Metal Chalcogenide-based Carbon Composites for Versatile Applications

Abstract

The use of renewable energy to generate hydrogen (H2) via photoelectrochemical (PEC) water splitting is an auspicious approach. In PEC, cathode electrode leads to a half-cell hydrogen evolution reaction (HER), and anode electrode leads to a half-cell oxygen evolution reaction (OER). In a PEC device, there are two important components: (i) light-absorbing electrode that generates electron-hole sets upon light incident and (ii) a catalyst that decreases the overpotential for H2 production and facilitates charge transfer. In this review, we focused on photocathode fabrication for H2 evolution. The photocathode materials are intensively investigated such as metal alloys, metal oxides, chalcogenides, borides, nitrides, and phosphides. In addition to this heterostructure, dye-sensitized and perovskite-sensitized photocathodes are developed. The tandem devices have been investigated to achieve high light absorption using two absorbers and optimizing different bandgap electrodes to get high solar to hydrogen conversion efficiency (STH). This review explores progress toward photocathode, with special prominence deployment in PEC systems, their importance, and the challenges in developing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCE:

Absorbed photon-to-current conversion efficiency

CB:

Conduction band

CZTS:

Copper zinc tin sulfide

D:

Dimension

DSPECs:

Dye-sensitized photo-electrochemical cells

DSC:

Dye-sensitized solar cell

Ef,h:

Quasi-Fermi levels of holes

Ef,n:

Quasi-Fermi levels of electrons

EF(EQ)(H2O/H2):

Fermi level of water/hydrogen redox reaction

ETM:

Electron transporting material

HER:

Hydrogen evolution reaction

HTM:

Hole transporting material

IPCE:

Incident photon-to-current efficiency

OER:

Oxygen evolution reaction

PSC:

Perovskite solar cell

PEC:

Photoelectrochemical

PMI-6 T-TPA:

Perylenemonoimid-sexithiophene-triphenylamine dye

QDs:

Quantum dots

STH:

Solar to hydrogen conversion efficiency

VBM:

Valence band maxima

VB:

Valence band

References

  1. Q. Huang, Z. Ye, X. Xiao, Recent progress in photocathodes for hydrogen evolution. J. Mater. Chem. A 3, 15824–15837 (2015). https://doi.org/10.1039/C5TA03594E

    Article  CAS  Google Scholar 

  2. C. Ros, T. Andreu, J.R. Morante, Photoelectrochemical water splitting: A road from stable metal oxides to protected thin film solar cells. J. Mater. Chem. A 8, 10625–10669 (2020). https://doi.org/10.1039/D0TA02755C

    Article  CAS  Google Scholar 

  3. S. Chen, D. Huang, P. Xu, W. Xue, L. Lei, M. Cheng, et al., Semiconductor-based photocatalysts for photocatalytic and photoelectrochemical water splitting: Will we stop with photocorrosion? J. Mater. Chem. A 8, 2286–2322 (2020). https://doi.org/10.1039/C9TA12799B

    Article  CAS  Google Scholar 

  4. Y.J. Jang, J.S. Lee, Photoelectrochemical water splitting with p-type metal oxide semiconductor photocathodes. ChemSusChem 12, 1835–1845 (2019). https://doi.org/10.1002/cssc.201802596

    Article  CAS  Google Scholar 

  5. T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional Photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018). https://doi.org/10.1021/acscatal.7b03437

    Article  CAS  Google Scholar 

  6. M. Faraji, M. Yousefi, S. Yousefzadeh, M. Zirak, N. Naseri, T.H. Jeon, et al., Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 12, 59–95 (2019). https://doi.org/10.1039/C8EE00886H

    Article  CAS  Google Scholar 

  7. A. Govind Rajan, J.M.P. Martirez, E.A. Carter, Why do we use the materials and operating conditions we use for heterogeneous (photo)electrochemical water splitting? ACS Catal. 10, 11177–11234 (2020). https://doi.org/10.1021/acscatal.0c01862

    Article  CAS  Google Scholar 

  8. J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting – Review. Int. J. Hydrog. Energy 43, 4804–4817 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.099

    Article  CAS  Google Scholar 

  9. D. Wang, A. Pierre, M.G. Kibria, K. Cui, X. Han, K.H. Bevan, et al., Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett. 11, 2353–2357 (2011). https://doi.org/10.1021/nl2006802

    Article  CAS  Google Scholar 

  10. I. Oh, J. Kye, S. Hwang, Enhanced Photoelectrochemical hydrogen production from silicon nanowire Array photocathode. Nano Lett. 12, 298–302 (2012). https://doi.org/10.1021/nl203564s

    Article  CAS  Google Scholar 

  11. D. Voiry, H.S. Shin, K.P. Loh, M. Chhowalla, Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2, 105 (2018). https://doi.org/10.1038/s41570-017-0105

    Article  CAS  Google Scholar 

  12. C.-H. Lee, G.-H. Lee, A.M. van der Zande, W. Chen, Y. Li, M. Han, et al., Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014). https://doi.org/10.1038/nnano.2014.150

    Article  CAS  Google Scholar 

  13. A. Pospischil, M.M. Furchi, T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014). https://doi.org/10.1038/nnano.2014.14

    Article  CAS  Google Scholar 

  14. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting – A critical review. Energy Environ. Sci. 8, 731–759 (2015). https://doi.org/10.1039/C4EE03271C

    Article  CAS  Google Scholar 

  15. H. Yu, Y. Peng, Y. Yang, Z.-Y. Li, Plasmon-enhanced light–matter interactions and applications. npj Comput. Mater. 5, 45 (2019). https://doi.org/10.1038/s41524-019-0184-1

    Article  Google Scholar 

  16. J.R. Hendrickson, S. Vangala, N. Nader, K. Leedy, J. Guo, J.W. Cleary, Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film. Appl. Phys. Lett. 107, 191906 (2015). https://doi.org/10.1063/1.4935219

    Article  CAS  Google Scholar 

  17. M. Sabaeian, M. Heydari, N. Ajamgard, Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: The influence of nano-strip cross section. AIP Adv. 5, 87126 (2015). https://doi.org/10.1063/1.4928517

    Article  CAS  Google Scholar 

  18. L. Ma, J. Zhao, J. Tan, L. Liu, Near-field effects on light absorption in nanoparticle system, in 2017 Progress in Electromagnetics Research Symposium – Fall (PIERS – FALL), (2017), pp. 2797–2801

    Chapter  Google Scholar 

  19. Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, W. Zhang, et al., Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles. Sci. Rep. 3, 2112 (2013). https://doi.org/10.1038/srep02112

    Article  Google Scholar 

  20. Y. Chen, H. Zhou, Defects chemistry in high-efficiency and stable perovskite solar cells. J. Appl. Phys. 128, 60903 (2020). https://doi.org/10.1063/5.0012384

    Article  CAS  Google Scholar 

  21. J. Zhu, G. Cheng, J. Xiong, W. Li, S. Dou, Recent advances in cu-based Cocatalysts toward solar-to-hydrogen evolution: Categories and roles. Solar RRL 3, 1900256 (2019). https://doi.org/10.1002/solr.201900256

    Article  Google Scholar 

  22. M. Basu, Z.-W. Zhang, C.-J. Chen, P.-T. Chen, K.-C. Yang, C.-G. Ma, et al., Heterostructure of Si and CoSe2: A promising photocathode based on a non-noble metal catalyst for Photoelectrochemical hydrogen evolution. Angew. Chem. Int. Ed. 54, 6211–6216 (2015). https://doi.org/10.1002/anie.201502573

    Article  CAS  Google Scholar 

  23. A. Fujishima, K. Honda, Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bull. Chem. Soc. Jpn. 44, 1148–1150 (1971). https://doi.org/10.1246/bcsj.44.1148

    Article  CAS  Google Scholar 

  24. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  25. J.G. Mavroides, J.A. Kafalas, D.F. Kolesar, Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241–243 (1976). https://doi.org/10.1063/1.88723

    Article  CAS  Google Scholar 

  26. A.J. Nozik, p-n photoelectrolysis cells. Appl. Phys. Lett. 29, 150–153 (1976). https://doi.org/10.1063/1.89004

    Article  CAS  Google Scholar 

  27. R.C. Kainthla, B. Zelenay, J.O. Bockris, Significant efficiency increase in self-driven Photoelectrochemical cell for water Photoelectrolysis. J. Electrochem. Soc. 134, 841–845 (1987). https://doi.org/10.1149/1.2100583

    Article  CAS  Google Scholar 

  28. O. Khaselev, J.A. Turner, A monolithic photovoltaic-Photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 LP – 427 (1998). https://doi.org/10.1126/science.280.5362.425

    Article  Google Scholar 

  29. E. Aharon-Shalom, A. Heller, Efficient p - InP ( Rh -  H alloy ) and p - InP ( Re -  H alloy ) hydrogen evolving photocathodes. J. Electrochem. Soc. 129, 2865–2866 (1982). https://doi.org/10.1149/1.2123695

    Article  CAS  Google Scholar 

  30. T.N. Veziroĝlu, F. Barbir, Initiation of hydrogen energy system in developing countries. Int. J. Hydrog. Energy 17, 527–538 (1992). https://doi.org/10.1016/0360-3199(92)90152-M

    Article  Google Scholar 

  31. D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, et al., H2 Evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl. Phys. Express 3, 101202 (2010). https://doi.org/10.1143/apex.3.101202

    Article  Google Scholar 

  32. D.A. Hoogeveen, M. Fournier, S.A. Bonke, A. Nattestad, A. Mishra, P. Bäuerle, et al., Origin of photoelectrochemical generation of dihydrogen by a dye-sensitized photocathode without an intentionally introduced catalyst. J. Phys. Chem. C 121, 25836–25846 (2017). https://doi.org/10.1021/acs.jpcc.7b08067

    Article  CAS  Google Scholar 

  33. P. Meng, M. Wang, Y. Yang, S. Zhang, L. Sun, CdSe quantum dots/molecular cobalt catalyst co-grafted open porous NiO film as a photocathode for visible light driven H2 evolution from neutral water. J. Mater. Chem. A 3, 18852–18859 (2015). https://doi.org/10.1039/C5TA06255A

    Article  CAS  Google Scholar 

  34. M. Crespo-Quesada, L.M. Pazos-Outón, J. Warnan, M.F. Kuehnel, R.H. Friend, E. Reisner, Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 7, 12555 (2016). https://doi.org/10.1038/ncomms12555

    Article  CAS  Google Scholar 

  35. C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices for solar water splitting – Materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017). https://doi.org/10.1039/C6CS00306K

    Article  CAS  Google Scholar 

  36. J.H. Kim, D. Hansora, P. Sharma, J.-W. Jang, J.S. Lee, Toward practical solar hydrogen production – An artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019). https://doi.org/10.1039/C8CS00699G

    Article  CAS  Google Scholar 

  37. L. Pan, N. Vlachopoulos, A. Hagfeldt, Directly Photoexcited oxides for photoelectrochemical water splitting. ChemSusChem 12, 4337–4352 (2019). https://doi.org/10.1002/cssc.201900849

    Article  CAS  Google Scholar 

  38. M.T. Mayer, Photovoltage at semiconductor–electrolyte junctions. Curr. Opin. Electrochem. 2, 104–110 (2017). https://doi.org/10.1016/j.coelec.2017.03.006

    Article  CAS  Google Scholar 

  39. C. Li, J. He, Y. Xiao, Y. Li, J.-J. Delaunay, Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy Environ. Sci. 13, 3269–3306 (2020). https://doi.org/10.1039/D0EE02397C

    Article  CAS  Google Scholar 

  40. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D

    Article  CAS  Google Scholar 

  41. F. Chen, Q. Zhu, Y. Wang, W. Cui, X. Su, Y. Li, Efficient photoelectrochemical hydrogen evolution on silicon photocathodes interfaced with nanostructured NiP2 cocatalyst films. ACS Appl. Mater. Interfaces 8, 31025–31031 (2016). https://doi.org/10.1021/acsami.6b11197

    Article  CAS  Google Scholar 

  42. H. Robatjazi, S.M. Bahauddin, C. Doiron, I. Thomann, Direct plasmon-driven photoelectrocatalysis. Nano Lett. 15, 6155–6161 (2015). https://doi.org/10.1021/acs.nanolett.5b02453

    Article  CAS  Google Scholar 

  43. L. Tian, R. Tyburski, C. Wen, R. Sun, M. Abdellah, J. Huang, et al., Understanding the role of surface states on mesoporous NiO films. J. Am. Chem. Soc. 142, 18668–18678 (2020). https://doi.org/10.1021/jacs.0c08886

    Article  CAS  Google Scholar 

  44. X. Liu, D. Wen, Z. Liu, J. Wei, D. Bu, S. Huang, Thiocyanate-capped CdSe@Zn1-XCdXS gradient alloyed quantum dots for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 402, 126178 (2020). https://doi.org/10.1016/j.cej.2020.126178

    Article  CAS  Google Scholar 

  45. H. Huang, B. Pradhan, J. Hofkens, M.B.J. Roeffaers, J.A. Steele, Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance. ACS Energy Lett. 5, 1107–1123 (2020). https://doi.org/10.1021/acsenergylett.0c00058

    Article  CAS  Google Scholar 

  46. H. Yan, K. He, I.A. Samek, D. Jing, M.G. Nanda, P.C. Stair, et al., Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 371, 1257 LP-1260 (2021). https://doi.org/10.1126/science.abd4441

    Article  CAS  Google Scholar 

  47. S. Choudhary, S. Upadhyay, P. Kumar, N. Singh, V.R. Satsangi, R. Shrivastav, et al., Nanostructured bilayered thin films in photoelectrochemical water splitting – A review. Int. J. Hydrog. Energy 37, 18713–18730 (2012). https://doi.org/10.1016/j.ijhydene.2012.10.028

    Article  CAS  Google Scholar 

  48. D. Sharma, S. Upadhyay, V.R. Satsangi, R. Shrivastav, U.V. Waghmare, S. Dass, Improved Photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode. J. Phys. Chem. C 118, 25320–25329 (2014). https://doi.org/10.1021/jp507039n

    Article  CAS  Google Scholar 

  49. J. Li, P. Jiménez-Calvo, E. Paineau, M.N. Ghazzal, Metal chalcogenides based heterojunctions and novel nanostructures for photocatalytic hydrogen evolution. Catalysts 10, 89 (2020). https://doi.org/10.3390/catal10010089

    Article  CAS  Google Scholar 

  50. X. Sun, J. Jiang, Y. Yang, Y. Shan, L. Gong, M. Wang, Enhancing the performance of Si-based photocathodes for solar hydrogen production in alkaline solution by facilely intercalating a sandwich N-doped carbon nanolayer to the interface of Si and TiO2. ACS Appl. Mater. Interfaces 11, 19132–19140 (2019). https://doi.org/10.1021/acsami.9b03757

    Article  CAS  Google Scholar 

  51. D. Zhang, J. Shi, W. Zi, P. Wang, Liu S (Frank), Recent advances in photoelectrochemical applications of silicon materials for solar-to-chemicals conversion. ChemSusChem 10, 4324–4341 (2017). https://doi.org/10.1002/cssc.201701674

    Article  CAS  Google Scholar 

  52. S.-S. Yi, X.-B. Zhang, B.-R. Wulan, J.-M. Yan, Q. Jiang, Non-noble metals applied to solar water splitting. Energy Environ. Sci. 11, 3128–3156 (2018). https://doi.org/10.1039/C8EE02096E

    Article  CAS  Google Scholar 

  53. L. Zhang, X. Chen, Z. Hao, X. Chen, Y. Li, Y. Cui, et al., TiO2/Au Nanoring/p-Si Nanohole photocathode for hydrogen generation. ACS Appl. Nano Mater. 2, 3654–3661 (2019). https://doi.org/10.1021/acsanm.9b00590

    Article  CAS  Google Scholar 

  54. M.A. Tekalgne, A. Hasani, D.Y. Heo, Q. Van Le, T.P. Nguyen, T.H. Lee, et al., SnO2@WS2/p-Si heterostructure photocathode for photoelectrochemical hydrogen production. J. Phys. Chem. C 124, 647–652 (2020). https://doi.org/10.1021/acs.jpcc.9b09623

    Article  CAS  Google Scholar 

  55. P. Gnanasekar, D. Periyanagounder, P. Varadhan, J.-H. He, J. Kulandaivel, Highly efficient and stable photoelectrochemical hydrogen evolution with 2D-NbS2/Si nanowire heterojunction. ACS Appl. Mater. Interfaces 11, 44179–44185 (2019). https://doi.org/10.1021/acsami.9b14713

    Article  CAS  Google Scholar 

  56. E. Luévano-Hipólito, L.M. Torres-Martínez, D. Sánchez-Martínez, M.R. Alfaro Cruz, Cu2O precipitation-assisted with ultrasound and microwave radiation for photocatalytic hydrogen production. Int. J. Hydrog. Energy 42, 12997–13010 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.192

    Article  CAS  Google Scholar 

  57. I.V. Bagal, N.R. Chodankar, M.A. Hassan, A. Waseem, M.A. Johar, D.-H. Kim, et al., Cu2O as an emerging photocathode for solar water splitting – A status review. Int. J. Hydrog. Energy 44, 21351–21378 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.184

    Article  CAS  Google Scholar 

  58. J.-M. Li, C.-W. Tsao, M.-J. Fang, C.-C. Chen, C.-W. Liu, Y.-J. Hsu, TiO2-Au-Cu2O photocathodes: Au-mediated Z-scheme charge transfer for efficient solar-driven photoelectrochemical reduction. ACS Appl. Nano Mater. 1, 6843–6853 (2018). https://doi.org/10.1021/acsanm.8b01678

    Article  CAS  Google Scholar 

  59. P. Wu, Z. Liu, D. Chen, M. Zhou, J. Wei, Flake-like NiO/WO3 p-n heterojunction photocathode for photoelectrochemical water splitting. Appl. Surf. Sci. 440, 1101–1106 (2018)

    Article  CAS  Google Scholar 

  60. C. Cheng, H.J. Fan, Branched nanowires: Synthesis and energy applications. Nano Today 7, 327–343 (2012). https://doi.org/10.1016/j.nantod.2012.06.002

    Article  CAS  Google Scholar 

  61. A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, G.Y. Jung, et al., 3D branched nanowire Photoelectrochemical electrodes for efficient solar water splitting. ACS Nano 7, 9407–9415 (2013). https://doi.org/10.1021/nn404170y

    Article  CAS  Google Scholar 

  62. A. Kargar, K. Sun, Y. Jing, C. Choi, H. Jeong, Y. Zhou, et al., Tailoring n-ZnO/p-Si branched nanowire Heterostructures for selective Photoelectrochemical water oxidation or reduction. Nano Lett. 13, 3017–3022 (2013). https://doi.org/10.1021/nl304539x

    Article  CAS  Google Scholar 

  63. H.S. Song, W.J. Zhang, C. Cheng, Y.B. Tang, L.B. Luo, X. Chen, et al., Controllable fabrication of three-dimensional radial ZnO nanowire/silicon microrod hybrid architectures. Cryst. Growth Des. 11, 147–153 (2011). https://doi.org/10.1021/cg101062e

    Article  CAS  Google Scholar 

  64. A. Kargar, Y. Jing, S.J. Kim, C.T. Riley, X. Pan, D. Wang, ZnO/CuO heterojunction branched nanowires for Photoelectrochemical hydrogen generation. ACS Nano 7, 11112–11120 (2013). https://doi.org/10.1021/nn404838n

    Article  CAS  Google Scholar 

  65. Y. Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci. Rep. 6, 35158 (2016). https://doi.org/10.1038/srep35158

    Article  CAS  Google Scholar 

  66. A.A. Dubale, A.G. Tamirat, H.-M. Chen, T.A. Berhe, C.-J. Pan, W.-N. Su, et al., A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction. J. Mater. Chem. A 4, 2205–2216 (2016). https://doi.org/10.1039/C5TA09464J

    Article  CAS  Google Scholar 

  67. Z. Li, Z. Jiang, W. Zhou, M. Chen, M. Su, X. Luo, et al., MoS2 nanoribbons with a prolonged photoresponse lifetime for enhanced visible light photoelectrocatalytic hydrogen evolution. Inorg. Chem. 60, 1991–1997 (2021). https://doi.org/10.1021/acs.inorgchem.0c03478

    Article  CAS  Google Scholar 

  68. W. Xun, Y. Wang, R. Fan, Q. Mu, S. Ju, Y. Peng, et al., Activating the MoS2 basal plane toward enhanced solar hydrogen generation via in situ photoelectrochemical control. ACS Energy Lett. 6, 267–276 (2021). https://doi.org/10.1021/acsenergylett.0c02320

    Article  CAS  Google Scholar 

  69. S. Zhang, X. Li, X. Zhang, X. Wang, W. Wang, R. Yu, et al., Enhancement of the photoelectrocatalytic H2 evolution on a rutile-TiO2(001) surface decorated with dendritic MoS2 monolayer Nanoflakes. ACS Appl. Energy Mater. 3, 5756–5764 (2020). https://doi.org/10.1021/acsaem.0c00682

    Article  CAS  Google Scholar 

  70. Y. Liu, C. Liang, J. Wu, T. Sharifi, H. Xu, Y. Nakanishi, et al., Atomic layered titanium sulfide quantum dots as Electrocatalysts for enhanced hydrogen evolution reaction. Adv. Mater. Interfaces 5, 1700895 (2018). https://doi.org/10.1002/admi.201700895

    Article  CAS  Google Scholar 

  71. G. Liu, Z. Li, T. Hasan, X. Chen, W. Zheng, W. Feng, et al., Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting. J. Mater. Chem. A 5, 1989–1995 (2017). https://doi.org/10.1039/C6TA08327G

    Article  CAS  Google Scholar 

  72. F. Zhang, Y. Chen, W. Zhou, C. Ren, H. Gao, G. Tian, Hierarchical SnS2/CuInS2 Nanosheet Heterostructure films decorated with C60 for remarkable Photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 11, 9093–9101 (2019). https://doi.org/10.1021/acsami.8b21222

    Article  CAS  Google Scholar 

  73. M. Cao, K. Yao, C. Wu, J. Huang, W. Yang, L. Zhang, et al., Facile synthesis of SnS and SnS2 Nanosheets for FTO/SnS/SnS2/Pt photocathode. ACS Appl. Energy Mater. 1, 6497–6504 (2018). https://doi.org/10.1021/acsaem.8b01414

    Article  CAS  Google Scholar 

  74. A. Hasani, Q. Van Le, M. Tekalgne, M.-J. Choi, S. Choi, T.H. Lee, et al., Fabrication of a WS2/p-Si heterostructure photocathode using direct hybrid thermolysis. ACS Appl. Mater. Interfaces 11, 29910–29916 (2019). https://doi.org/10.1021/acsami.9b08654

    Article  CAS  Google Scholar 

  75. D. Chu, K. Li, A. Liu, J. Huang, C. Zhang, P. Yang, et al., Zn-doped hematite modified by graphene-like WS2: A p-type semiconductor hybrid photocathode for water splitting to produce hydrogen. Int. J. Hydrog. Energy 43, 7307–7316 (2018). https://doi.org/10.1016/j.ijhydene.2018.02.152

    Article  CAS  Google Scholar 

  76. L. Zeng, Y. Liu, S. Lin, W. Qarony, L. Tao, Y. Chai, et al., High photoelectrochemical activity and stability of Au-WS2/silicon heterojunction photocathode. Sol. Energy Mater. Sol. Cells 174, 300–306 (2018). https://doi.org/10.1016/j.solmat.2017.07.042

    Article  CAS  Google Scholar 

  77. G. Huang, J. Mao, R. Fan, Z. Yin, X. Wu, J. Jie, et al., Integrated MoSe2 with n+p-Si photocathodes for solar water splitting with high efficiency and stability. Appl. Phys. Lett. 112, 13902 (2018). https://doi.org/10.1063/1.5012110

    Article  CAS  Google Scholar 

  78. S. Hong, C.K. Rhee, Y. Sohn, Photoelectrochemical hydrogen evolution and CO2 reduction over MoS2/Si and MoSe2/Si nanostructures by combined Photoelectrochemical deposition and rapid-thermal annealing process. Catalysts 9, 494 (2019). https://doi.org/10.3390/catal9060494

    Article  CAS  Google Scholar 

  79. S. Seo, S. Kim, H. Choi, J. Lee, H. Yoon, G. Piao, et al., Direct in situ growth of centimeter-scale multi-heterojunction MoS2/WS2/WSe2 thin-film catalyst for photo-electrochemical hydrogen evolution. Adv. Sci. 6, 1900301 (2019). https://doi.org/10.1002/advs.201900301

    Article  CAS  Google Scholar 

  80. Z. Ma, P. Konze, M. Küpers, K. Wiemer, D. Hoffzimmer, S. Neumann, et al., Elucidation of the active sites for monodisperse FePt and Pt nanocrystal catalysts for p-WSe2 photocathodes. J. Phys. Chem. C 124, 11877–11885 (2020). https://doi.org/10.1021/acs.jpcc.0c01288

    Article  CAS  Google Scholar 

  81. X. Yu, N. Guijarro, M. Johnson, K. Sivula, Defect mitigation of solution-processed 2D WSe2 Nanoflakes for solar-to-hydrogen conversion. Nano Lett. 18, 215–222 (2018). https://doi.org/10.1021/acs.nanolett.7b03948

    Article  CAS  Google Scholar 

  82. F. Bozheyev, K. Harbauer, C. Zahn, D. Friedrich, K. Ellmer, Highly (001)-textured p-type WSe2 thin films as efficient large-area photocathodes for solar hydrogen evolution. Sci. Rep. 7, 16003 (2017). https://doi.org/10.1038/s41598-017-16283-8

    Article  CAS  Google Scholar 

  83. B. Luo, G. Liu, L. Wang, Recent advances in 2D materials for photocatalysis. Nanoscale 8, 6904–6920 (2016). https://doi.org/10.1039/C6NR00546B

    Article  CAS  Google Scholar 

  84. M.A. Hassan, M.-W. Kim, M.A. Johar, A. Waseem, M.-K. Kwon, S.-W. Ryu, Transferred monolayer MoS2 onto GaN for heterostructure photoanode: Toward stable and efficient photoelectrochemical water splitting. Sci. Rep. 9, 20141 (2019). https://doi.org/10.1038/s41598-019-56807-y

    Article  CAS  Google Scholar 

  85. J. Liao, B. Sa, J. Zhou, R. Ahuja, Z. Sun, Design of high-efficiency visible-light photocatalysts for water splitting: MoS2/AlN(GaN) heterostructures. J. Phys. Chem. C 118, 17594–17599 (2014). https://doi.org/10.1021/jp5038014

    Article  CAS  Google Scholar 

  86. H. Zhang, Y.-N. Zhang, H. Liu, L.-M. Liu, Novel heterostructures by stacking layered molybdenum disulfides and nitrides for solar energy conversion. J. Mater. Chem. A 2, 15389–15395 (2014). https://doi.org/10.1039/C4TA03134B

    Article  CAS  Google Scholar 

  87. Z. Zhang, Q. Qian, B. Li, K.J. Chen, Interface engineering of monolayer MoS2/GaN hybrid heterostructure: Modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Interfaces 10, 17419–17426 (2018). https://doi.org/10.1021/acsami.8b01286

    Article  CAS  Google Scholar 

  88. D. Ghosh, P. Devi, P. Kumar, Modified p-GaN microwells with vertically aligned 2D-MoS2 for enhanced photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 12, 13797–13804 (2020). https://doi.org/10.1021/acsami.9b20969

    Article  CAS  Google Scholar 

  89. F. Meng, J. Li, S.K. Cushing, M. Zhi, N. Wu, Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 135, 10286–10289 (2013). https://doi.org/10.1021/ja404851s

    Article  CAS  Google Scholar 

  90. Y.-J. Yuan, J.-R. Tu, Z.-J. Ye, D.-Q. Chen, B. Hu, Y.-W. Huang, et al., MoS2-graphene/ZnIn2S4 hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar hydrogen generation. Appl. Catal. B Environ. 188, 13–22 (2016). https://doi.org/10.1016/j.apcatb.2016.01.061

    Article  CAS  Google Scholar 

  91. M. Moriya, T. Minegishi, H. Kumagai, M. Katayama, J. Kubota, K. Domen, Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. J. Am. Chem. Soc. 135, 3733–3735 (2013). https://doi.org/10.1021/ja312653y

    Article  CAS  Google Scholar 

  92. H. Kumagai, T. Minegishi, N. Sato, T. Yamada, J. Kubota, K. Domen, Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In,Ga)Se2 photocathodes. J. Mater. Chem. A 3, 8300–8307 (2015). https://doi.org/10.1039/C5TA01058F

    Article  CAS  Google Scholar 

  93. F. Jiang, H.T. Gunawan, Y. Kuang, T. Minegishi, K. Domen, et al., Pt/In2S3/CdS/Cu2ZnSnS4 thin film as an efficient and stable photocathode for water reduction under sunlight radiation. J. Am. Chem. Soc. 137, 13691–13697 (2015). https://doi.org/10.1021/jacs.5b09015

    Article  CAS  Google Scholar 

  94. W. Yang, Y. Oh, J. Kim, M.J. Jeong, J.H. Park, J. Moon, Molecular chemistry-controlled hybrid ink-derived efficient Cu2ZnSnS4 photocathodes for photoelectrochemical water splitting. ACS Energy Lett. 1, 1127–1136 (2016). https://doi.org/10.1021/acsenergylett.6b00453

    Article  CAS  Google Scholar 

  95. B. Kim, G.S. Park, Y.J. Hwang, D.H. Won, W. Kim, D.K. Lee, et al., Cu(In,Ga)(S,Se)2 photocathodes with a grown-in CuxS catalyst for solar water splitting. ACS Energy Lett. 4, 2937–2944 (2019). https://doi.org/10.1021/acsenergylett.9b01816

    Article  CAS  Google Scholar 

  96. K. Feng, D. Huang, L. Li, K. Wang, J. Li, T. Harada, et al., MoSx-CdS/Cu2ZnSnS4-based thin film photocathode for solar hydrogen evolution from water. Appl. Catal. B Environ. 268, 118438 (2020). https://doi.org/10.1016/j.apcatb.2019.118438

    Article  CAS  Google Scholar 

  97. M.G. Mali, H. Yoon, B.N. Joshi, H. Park, S.S. Al-Deyab, D.C. Lim, et al., Enhanced photoelectrochemical solar water splitting using a platinum-decorated CIGS/CdS/ZnO photocathode. ACS Appl. Mater. Interfaces 7, 21619–21625 (2015). https://doi.org/10.1021/acsami.5b07267

    Article  CAS  Google Scholar 

  98. Y. Zhou, D. Shin, E. Ngaboyamahina, Q. Han, C.B. Parker, D.B. Mitzi, et al., Efficient and stable Pt/TiO2/CdS/Cu2BaSn(S,Se)4 photocathode for water electrolysis applications. ACS Energy Lett. 3, 177–183 (2018). https://doi.org/10.1021/acsenergylett.7b01062

    Article  CAS  Google Scholar 

  99. C. Yu, Q. Jia, H. Zhang, W. Liu, X. Yu, X. Zhang, Enhancing photoelectrochemical hydrogen production of a n+p-Si hetero-junction photocathode with amorphous Ni and Ti layers. Inorg. Chem. Front. 6, 527–532 (2019). https://doi.org/10.1039/C8QI01269E

    Article  CAS  Google Scholar 

  100. S.K. Choi, G. Piao, W. Choi, H. Park, Highly efficient hydrogen production using p-Si wire arrays and NiMoZn heterojunction photocathodes. Appl. Catal. B Environ. 217, 615–621 (2017). https://doi.org/10.1016/j.apcatb.2017.06.020

    Article  CAS  Google Scholar 

  101. L. Wang, W. Wang, Y. Chen, L. Yao, X. Zhao, H. Shi, et al., Heterogeneous p–n junction CdS/Cu2O Nanorod arrays: Synthesis and superior visible-light-driven Photoelectrochemical performance for hydrogen evolution. ACS Appl. Mater. Interfaces 10, 11652–11662 (2018). https://doi.org/10.1021/acsami.7b19530

    Article  CAS  Google Scholar 

  102. C. Liu, T. Liu, Y. Li, Z. Zhao, D. Zhou, W. Li, et al., A dendritic Sb2Se3/In2S3 heterojunction nanorod array photocathode decorated with a MoSx catalyst for efficient solar hydrogen evolution. J. Mater. Chem. A 8, 23385–23394 (2020). https://doi.org/10.1039/D0TA08874A

    Article  CAS  Google Scholar 

  103. L. Zhang, T. Minegishi, M. Nakabayashi, Y. Suzuki, K. Seki, N. Shibata, et al., Durable hydrogen evolution from water driven by sunlight using (Ag,Cu)GaSe2 photocathodes modified with CdS and CuGa3Se5. Chem. Sci. 6, 894–901 (2015). https://doi.org/10.1039/C4SC02346C

    Article  CAS  Google Scholar 

  104. J. Zhao, T. Minegishi, L. Zhang, M. Zhong, N.M. Gunawan, et al., Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition–sulfurization method. Angew. Chem. Int. Ed. 53, 11808–11812 (2014). https://doi.org/10.1002/anie.201406483

    Article  CAS  Google Scholar 

  105. D.L. Ashford, M.K. Gish, A.K. Vannucci, M.K. Brennaman, J.L. Templeton, J.M. Papanikolas, et al., Molecular chromophore–catalyst assemblies for solar fuel applications. Chem. Rev. 115, 13006–13049 (2015). https://doi.org/10.1021/acs.chemrev.5b00229

    Article  CAS  Google Scholar 

  106. Z. Yu, F. Li, L. Sun, Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ. Sci. 8, 760–775 (2015). https://doi.org/10.1039/C4EE03565H

    Article  CAS  Google Scholar 

  107. N. Queyriaux, N. Kaeffer, A. Morozan, M. Chavarot-Kerlidou, V. Artero, Molecular cathode and photocathode materials for hydrogen evolution in photoelectrochemical devices. J Photochem Photobiol C: Photochem Rev 25, 90–105 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.08.001

    Article  CAS  Google Scholar 

  108. N. Kaeffer, J. Massin, C. Lebrun, O. Renault, M. Chavarot-Kerlidou, V. Artero, Covalent design for dye-sensitized H2-evolving photocathodes based on a cobalt Diimine–Dioxime catalyst. J. Am. Chem. Soc. 138, 12308–12311 (2016). https://doi.org/10.1021/jacs.6b05865

    Article  CAS  Google Scholar 

  109. M.A. Gross, C.E. Creissen, K.L. Orchard, E. Reisner, Photoelectrochemical hydrogen production in water using a layer-by-layer assembly of a Ru dye and Ni catalyst on NiO. Chem. Sci. 7, 5537–5546 (2016). https://doi.org/10.1039/C6SC00715E

    Article  CAS  Google Scholar 

  110. Z. Ji, M. He, Z. Huang, U. Ozkan, Y. Wu, Photostable p-type dye-sensitized Photoelectrochemical cells for water reduction. J. Am. Chem. Soc. 135, 11696–11699 (2013). https://doi.org/10.1021/ja404525e

    Article  CAS  Google Scholar 

  111. L. Li, L. Duan, F. Wen, C. Li, M. Wang, A. Hagfeldt, et al., Visible light driven hydrogen production from a photo-active cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO. Chem. Commun. 48, 988–990 (2012). https://doi.org/10.1039/C2CC16101J

    Article  CAS  Google Scholar 

  112. S. Lyu, J. Massin, M. Pavone, A.B. Muñoz-García, C. Labrugère, T. Toupance, et al., H2-evolving dye-sensitized photocathode based on a ruthenium–Diacetylide/Cobaloxime supramolecular assembly. ACS Appl. Energy Mater. 2, 4971–4980 (2019). https://doi.org/10.1021/acsaem.9b00652

    Article  CAS  Google Scholar 

  113. C.J. Wood, G.H. Summers, C.A. Clark, N. Kaeffer, M. Braeutigam, L.R. Carbone, et al., A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion. Phys. Chem. Chem. Phys. 18, 10727–10738 (2016). https://doi.org/10.1039/C5CP05326A

    Article  CAS  Google Scholar 

  114. E.A. Gibson, M. Awais, D. Dini, D.P. Dowling, M.T. Pryce, J.G. Vos, et al., Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering. Phys. Chem. Chem. Phys. 15, 2411–2420 (2013). https://doi.org/10.1039/C2CP43592F

    Article  CAS  Google Scholar 

  115. D. Dini, Y. Halpin, J.G. Vos, E.A. Gibson, The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells. Coord. Chem. Rev. 304–305, 179–201 (2015). https://doi.org/10.1016/j.ccr.2015.03.020

    Article  CAS  Google Scholar 

  116. C.E. Creissen, J. Warnan, E. Reisner, Solar H2 generation in water with a CuCrO2 photocathode modified with an organic dye and molecular Ni catalyst. Chem. Sci. 9, 1439–1447 (2018). https://doi.org/10.1039/C7SC04476C

    Article  CAS  Google Scholar 

  117. H. Kumagai, G. Sahara, K. Maeda, M. Higashi, R. Abe, O. Ishitani, Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(ii)–Re(i) supramolecular photocatalyst: Non-biased visible-light-driven CO2 reduction with water oxidation. Chem. Sci. 8, 4242–4249 (2017). https://doi.org/10.1039/C7SC00940B

    Article  CAS  Google Scholar 

  118. C.E. Creissen, J. Warnan, D. Antón-García, Y. Farré, F. Odobel, E. Reisner, Inverse opal CuCrO2 photocathodes for H2 production using organic dyes and a molecular Ni catalyst. ACS Catal. 9, 9530–9538 (2019). https://doi.org/10.1021/acscatal.9b02984

    Article  CAS  Google Scholar 

  119. H. Zhang, Z. Yang, W. Yu, H. Wang, W. Ma, X. Zong, et al., A Sandwich-like Organolead halide perovskite photocathode for efficient and durable Photoelectrochemical hydrogen evolution in water. Adv. Energy Mater. 8, 1800795 (2018). https://doi.org/10.1002/aenm.201800795

    Article  CAS  Google Scholar 

  120. J.-H. Kim, S. Seo, J.-H. Lee, H. Choi, S. Kim, G. Piao, et al., Efficient and stable perovskite-based photocathode for Photoelectrochemical hydrogen production. Adv. Funct. Mater. 31, 2008277 (2021). https://doi.org/10.1002/adfm.202008277

    Article  CAS  Google Scholar 

  121. I.S. Kim, M.J. Pellin, A.B.F. Martinson, Acid-compatible halide perovskite photocathodes utilizing atomic layer deposited TiO2 for solar-driven hydrogen evolution. ACS Energy Lett. 4, 293–298 (2019). https://doi.org/10.1021/acsenergylett.8b01661

    Article  CAS  Google Scholar 

  122. P. Da, M. Cha, L. Sun, Y. Wu, Z.-S. Wang, G. Zheng, High-performance perovskite Photoanode enabled by Ni passivation and catalysis. Nano Lett. 15, 3452–3457 (2015). https://doi.org/10.1021/acs.nanolett.5b00788

    Article  CAS  Google Scholar 

  123. M.T. Hoang, N.D. Pham, J.H. Han, J.M. Gardner, I. Oh, Integrated Photoelectrolysis of water implemented on organic metal halide perovskite Photoelectrode. ACS Appl. Mater. Interfaces 8, 11904–11909 (2016). https://doi.org/10.1021/acsami.6b03478

    Article  CAS  Google Scholar 

  124. C. Wang, S. Yang, X. Chen, T. Wen, H.G. Yang, Surface-functionalized perovskite films for stable photoelectrochemical water splitting. J. Mater. Chem. A 5, 910–913 (2017). https://doi.org/10.1039/C6TA08812K

    Article  CAS  Google Scholar 

  125. L.-F. Gao, W.-J. Luo, Y.-F. Yao, Z.-G. Zou, An all-inorganic lead halide perovskite-based photocathode for stable water reduction. Chem. Commun. 54, 11459–11462 (2018). https://doi.org/10.1039/C8CC06952B

    Article  CAS  Google Scholar 

  126. K. Zhang, M. Ma, P. Li, D.H. Wang, J.H. Park, Water splitting Progress in tandem devices: Moving photolysis beyond electrolysis. Adv. Energy Mater. 6, 1600602 (2016). https://doi.org/10.1002/aenm.201600602

    Article  CAS  Google Scholar 

  127. M.S. Prévot, K. Sivula, Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 117, 17879–17893 (2013). https://doi.org/10.1021/jp405291g

    Article  CAS  Google Scholar 

  128. P. Dias, M. Schreier, S.D. Tilley, J. Luo, J. Azevedo, L. Andrade, et al., Transparent cuprous oxide photocathode enabling a stacked tandem cell for unbiased water splitting. Adv. Energy Mater. 5, 1501537 (2015). https://doi.org/10.1002/aenm.201501537

    Article  CAS  Google Scholar 

  129. Y. Chen, X. Feng, Y. Liu, X. Guan, C. Burda, L. Guo, Metal oxide-based tandem cells for self-biased Photoelectrochemical water splitting. ACS Energy Lett. 5, 844–866 (2020). https://doi.org/10.1021/acsenergylett.9b02620

    Article  CAS  Google Scholar 

  130. Y. Piekner, H. Dotan, A. Tsyganok, K.D. Malviya, D.A. Grave, O. Kfir, et al., Implementing strong interference in ultrathin film top absorbers for tandem solar cells. ACS Photonics 5, 5068–5078 (2018). https://doi.org/10.1021/acsphotonics.8b01384

    Article  CAS  Google Scholar 

  131. A. Vilanova, T. Lopes, C. Spenke, M. Wullenkord, A. Mendes, Optimized photoelectrochemical tandem cell for solar water splitting. Energy Storage Mater. 13, 175–188 (2018). https://doi.org/10.1016/j.ensm.2017.12.017

    Article  Google Scholar 

  132. L. Pan, J.H. Kim, M.T. Mayer, M.-K. Son, A. Ummadisingu, J.S. Lee, et al., Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1, 412–420 (2018). https://doi.org/10.1038/s41929-018-0077-6

    Article  CAS  Google Scholar 

  133. S.K. Karuturi, H. Shen, A. Sharma, F.J. Beck, P. Varadhan, T. Duong, et al., Over 17% efficiency stand-alone solar water splitting enabled by perovskite-silicon tandem absorbers. Adv. Energy Mater. 10, 2000772 (2020). https://doi.org/10.1002/aenm.202000772

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the funding as the statement: this research is supported by the Second Century Fund (C2F), the CAT-REAC industrial project, Thailand Science Research and Innovation Fund Chulalongkorn University (CU_FRB65_ind (15)_163_21_29), the NSRF via the Program Management Unit for Human Resources and Institutional Development, Research and Innovation [grant number B16F640143]), and the Asahi Glass Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supareak Praserthdam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shaikh, J.S. et al. (2023). Rational Engineering of Photocathodes for Hydrogen Production: Heterostructure, Dye-Sensitized, Perovskite, and Tandem Cells. In: Ezema, F.I., Lokhande, C.D., Lokhande, A.C. (eds) Chemically Deposited Metal Chalcogenide-based Carbon Composites for Versatile Applications . Springer, Cham. https://doi.org/10.1007/978-3-031-23401-9_11

Download citation

Publish with us

Policies and ethics