Skip to main content
Log in

Grain growth and void formation in dielectric-encapsulated Cu thin films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Grain growth in 40-nm-thick Cu films encapsulated by over- and under-layers of SiO2, Al2O3, Si3N4, and MgO was investigated. The films were magnetron sputter deposited onto cooled SiO2/Si substrates in an ultrahigh vacuum purity environment. Ex situ annealing was performed at 400 and 800 °C in 1 atm reducing gas. Films deposited at −120 °C exhibited more extensive grain growth after annealing than films deposited at −40 °C. Films annealed at room temperature had grain sizes less than 35 nm. All films exhibited some void formation after annealing at 400 and 800 °C, but the films encapsulated in Al2O3 exhibited the lowest area fraction of voids. The mean grain sizes of the Al2O3-encapsulated films, as measured by the linear intercept method, were 86 and 134 nm after annealing at 400 and 800 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. C.K. Hu J.M.E. Harper: Copper interconnections and reliability. Mater. Chem. Phys. 52, 5 1998

    Article  CAS  Google Scholar 

  2. S.M. Rossnagel T.S. Kuan: Alteration of Cu conductivity in the size effect regime. J. Vac. Sci. Technol., B 22, 240 2004

    Article  CAS  Google Scholar 

  3. S.M. Rossnagel T.S. Kuan: Time development of microstructure and resistivity for very thin Cu films. J. Vac. Sci. Technol., A 20, 1911 2002

    Article  CAS  Google Scholar 

  4. C. Detavernier, D. Deduytsche, R.L. Van Meirhaeghe, J. De Baerdemaeker C. Dauwe: Room-temperature grain growth in sputter-deposited Cu films. Appl. Phys. Lett. 82, 1863 2003

    Article  CAS  Google Scholar 

  5. K. Barmak, A. Gungor, C. Cabral J.M.E. Harper: Annealing behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity. J. Appl. Phys. 94, 1605 2003

    Article  CAS  Google Scholar 

  6. J.M.E. Harper K.P. Rodbell: Microstructure control in semiconductor metallization. J. Vac. Technol., B 15, 763 1997

    Article  CAS  Google Scholar 

  7. B. Gunther, A. Kumpmann H.D. Kunze: Secondary recrystallization effects in nanostructured elemental metals. Scr. Metall. Mater. 27, 833 1992

    Article  Google Scholar 

  8. M. Moriyama, K. Matsunaga M. Murakami: Microstructure control in semiconductor metallization. J. Electron. Mater. 32, 261 2003

    Article  CAS  Google Scholar 

  9. T.L. Alford, L.H. Chen K.S. Gadre: Stability of silver thin films on various underlying layers at elevated temperatures. Thin Solid Films 429, 248 2003

    Article  CAS  Google Scholar 

  10. J.E. Palmer, C.V. Thompson H.I. Smith: Grain growth and grain size distributions in thin germanium films. J. Appl. Phys. 62, 2492 1987

    Article  CAS  Google Scholar 

  11. E. Jiran C.V. Thompson: Capillary instabilities in thin-films. J. Electron. Mater. 19, 1153 1990

    Article  CAS  Google Scholar 

  12. R. Dannenberg, E.A. Stach, J.R. Groza B.J. Dresser: In-situ TEM observations of abnormal grain growth, coarsening, and substrate de-wetting in nanocrystalline Ag thin films. Thin Solid Films 370, 54 2000

    Article  CAS  Google Scholar 

  13. D.J. Srolovitz M.G. Goldiner: The thermodynamics and kinetics of film agglomeration. JOM 31, 47 1995

    Google Scholar 

  14. W.W. Mullins: Theory of thermal grooving. J. Appl. Phys. 28, 333 1957

    Article  CAS  Google Scholar 

  15. K. Sieradzki, K. Bailey T.L. Alford: Agglomeration and percolation conductivity. Appl. Phys. Lett. 79, 3401 2001

    Article  CAS  Google Scholar 

  16. P.R. Gadkari, A.P. Warren, R.M. Todi, R.V. Petrova K.R. Coffey: Comparison of the agglomeration behavior of thin metallic films on SiO2. J. Vac. Sci. Technol., A 23, 1152 2005

    Article  CAS  Google Scholar 

  17. B. Yao, R.V. Petrova, R.R. Vanfleet K.R. Coffey: A modified back-etch method for preparation of plan-view high-resolution transmission electron microscopy samples. J. Electron Microsc. (Tokyo) 55, 209 2006

    Article  CAS  Google Scholar 

  18. B. Yao K.R. Coffey: Back-etch method for plan view transmission electron microscopy sample preparation of optically opaque films. J. Electron Microsc. 57(2), 47 2008

    Article  CAS  Google Scholar 

  19. T.J. Collins: ImageJ for microscopy. Biotechniques 43(1 Suppl), 25 2007

    Article  Google Scholar 

  20. R.W. Balluffi, S.A. Allen W.C. Carter: Kinetics of Materials 1st ed. John Wiley & Sons Hoboken,NJ 2005 368–376

    Book  Google Scholar 

Download references

Acknowledgments

The authors gratefully recognize the support of the Semiconductor Research Corporation, Task 1292.008. K. Barmak and V. Kumar also acknowledge partial support from the Carnegie Mellon University (CMU) Materials Research Science and Engineering Center (MRSEC) under National Science Foundation (NSF) Division of Materials Research Grant No. DMR-0520425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, B., Sun, T., Kumar, V. et al. Grain growth and void formation in dielectric-encapsulated Cu thin films. Journal of Materials Research 23, 2033–2039 (2008). https://doi.org/10.1557/JMR.2008.0254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0254

Navigation