Skip to main content
Log in

The effect of strain on abnormal grain growth in Cu thin films

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

To understand a grain growth mechanism in Cu thin films that were deposited on rigid substrates by sputter deposition and subsequently annealed at various temperatures, microstructures of the Cu films with or without the rigid substrates were analyzed by x-ray diffraction (XRD), transmission electron microscopy (TEM), and electrical resistivity measurements. Significant grain growth (with bimodal grain size distribution) was observed during room-temperature storage in the Cu films deposited on the Si3N4 and rock salt substrates. However, in the free-standing Cu films, no grain growth was observed during room temperature storage. The present result suggested that the grain growth rates in the Cu thin films were strongly influenced by the existence of the rigid substrates, indicating stress (or strain) introduced in the films was a primary factor to induce the grain growth in the Cu films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.V. Thompson, Mater. Res. Soc. Symp. Proc. 309, 383 (1993).

    CAS  Google Scholar 

  2. C.S. Smith, Trans. AIME 188, 1021 (1950).

    Google Scholar 

  3. E.M. Zielinski, R.P. Vinci, and J.C. Bravman, J. Appl. Phys. 76, 4516 (1994).

    Article  CAS  Google Scholar 

  4. D.P. Tracy and D.B. Knorr, J. Electron. Mater. 22, 611 (1993).

    Google Scholar 

  5. D.A. Smith, S.J. Townsend, and C.S. Nichols, Mater. Res. Soc. Symp. Proc. 238, 531 (1992).

    CAS  Google Scholar 

  6. T. Ritzdorf, L. Graham, S. Jin, C. Mu, and D.B. Fraser, Proc. Int. Interconnect Technology Conf. (New York: IEEE, 1998), pp. 166–168.

    Google Scholar 

  7. M.E. Gross, K. Takahashi, C. Lingk, T. Ritzdorf, and K. Gibbons, Advanced Metallization Conf. 1998, ed. G.S. Sandhu, H. Koerner, M. Murakami, Y. Yasuda, and N. Kobayashi (Pittsburgh, PA: Materials Research Society, 1999), pp. 51–56.

    Google Scholar 

  8. C. Lingk and M.E. Gross, J. Appl. Phys. 84, 5547 (1998).

    Article  CAS  Google Scholar 

  9. C. Lingk, et al., Advanced Metallization Conf. 1998, ed. G.S. Sandhu, H. Koerner, M. Murakami, Y. Yasuda, and N. Kobayashi (Pittsburgh, PA: Materials Research Society, 1999), pp. 89–94.

    Google Scholar 

  10. D. Walther, M.E. Gross, K. Evans-Lutterodt, W.L. Brown, M. Oh, S. Merchant, and P. Naresh, Mater. Res. Soc. Symp. Proc. 612, D.10.1.1 (2000).

  11. C. Cabral, Jr. et al., Advanced Metallization Conf. 1998, ed. G.S. Sandhu, H. Koerner, M. Murakami, Y. Yasuda, and N. Kobayashi (Pittsburgh, PA: Materials Research Society, 1999), pp. 81–87.

    Google Scholar 

  12. Q.-T. Jiang and K. Smekalin, Advanced Metallization Conf. 1998, ed. G.S. Sandhu, H. Koerner, M. Murakami, Y. Yasuda, and N. Kobayashi (Pittsburgh, PA: Materials Research Society, 1999), p. 209.

    Google Scholar 

  13. J.M.E. Harper, C. Cabral, Jr., P.C. Andricacos, L. Gignac, I.C. Noyan, K.P. Rodbell, and C.K. Hu, J. Appl. Phys. 86, 2516 (1999).

    Article  CAS  Google Scholar 

  14. K. Ueno, T. Ritzdorf, and S. Grace, Advanced Metallization Conf. 1998, ed. G.S. Sandhu, H. Koerner, M. Murakami, Y. Yasuda, and N. Kobayashi (Pittsburgh, PA: Materials Research Society, 1999), pp. 95–101.

    Google Scholar 

  15. S.H. Brongersma, E. Richard, I. Vervoot, H. Bender, W. Vandervorst, S. Lagrange, G. Beyer, and K. Maex, J. Appl. Phys. 86, 3642 (1999).

    Article  CAS  Google Scholar 

  16. P. Chaudhari, J. Vac. Sci. Technol. 9, 520 (1972).

    Article  CAS  Google Scholar 

  17. T.-S. Kuan and M. Murakami, Metall. Trans. A 13A, 383 (1982).

    CAS  Google Scholar 

  18. M. Murakami, E.I. Alessandrini, and K.K. Kim, J. Appl. Phys. 56, 2068 (1984).

    Article  CAS  Google Scholar 

  19. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (New York: Pergamon, 1996), p. 17.

    Google Scholar 

  20. L.E. Murr, Interfacial Phenomena in Metals and Alloys (Reading, MA: Addison-Wesley Publishing Company, 1975), pp. 138–153.

    Google Scholar 

  21. R.P. Vinci, T.N. Marieb, and J.C. Bravman, Mater. Res. Soc. Symp. Proc. 308, 297 (1993).

    CAS  Google Scholar 

  22. M. Murakami, Mater. Res. Soc. Symp. Proc. 130, 269 (1989).

    CAS  Google Scholar 

  23. M. Murakami, T.-S. Kuan, and I.A. Blech, in Treatise on Materials Science and Technology, ed. K.N. Tu and R. Rosenberg (New York: Academic Press, 1982), pp. 163–210.

    Google Scholar 

  24. K. Sinha and T.T. Sheng, Thin Solid Films 48, 117 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriyama, M., Matsunaga, K. & Murakami, M. The effect of strain on abnormal grain growth in Cu thin films. J. Electron. Mater. 32, 261–267 (2003). https://doi.org/10.1007/s11664-003-0219-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-003-0219-7

Key words

Navigation