Skip to main content
Log in

Nonhydrolytic sol-gel synthesis: Microstructural and morphological study on nickel ferrite nanocrystals coated with oleic acid

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nickel ferrite nanostructured particles coated with chemisorbed oleic acid were successfully synthesized by nonhydrolytic sol-gel method. By varying the composition of metal precursors, two microstructures were obtained, i.e., dispersed nanocrystals (9.7 ± 1.8 nm) and submicron aggregates (152 ± 21 nm) consisted of many nanocrystals (8.1 ± 1.3 nm). Because oleic acid could form complex with iron (III) ions, but not with nickel (II), increasing the concentration of iron precursor consumed more oleic acid and led to insufficient oleic acid coating on particle surface. Strong intercrystallite interaction was induced from less protected nanocrystals, and aggregation thus occurred between different crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
TABLE I.
TABLE II.
FIG. 10
FIG. 11
TABLE III.

Similar content being viewed by others

References

  1. S. Sun, C.B. Murray, D. Weller, L. Folks A. Moser: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 2000

    Article  CAS  Google Scholar 

  2. V.E. Fertman: Magnetic Fluids Guidebook: Properties and Applications Hemisphere Publishing Co. New York 1990 57

    Google Scholar 

  3. B.M. Berkovsky, V.F. Medvedev M.S. Krakov: Magnetic Fluids: Engineering Applications Oxford University Press Oxford, UK 1993 125

    Google Scholar 

  4. S.G. Grancharov, H. Zeng, S.H. Sun, S.X. Wang, S. O’Brien, C.B. Murray, J.R. Kirtley G.A. Held: Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J. Phys. Chem. B 109, 13030 2005

    Article  CAS  Google Scholar 

  5. C.C. Berry: Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. J. Mater. Chem. 15, 543 2005

    Article  CAS  Google Scholar 

  6. I. Koh, X. Wang, B. Varughese, L. Isaacs, S.H. Ehrman D.S. English: Magnetic iron oxide nanoparticles for biorecognition: Evaluation of surface coverage and activity. J. Phys. Chem. B 110, 1553 2006

    Article  CAS  Google Scholar 

  7. F.M. Doyle A.J. Monhemius: Kinetics and mechanisms of precipitation of nickel ferrite by hydrolytic stripping of iron (III)—nickel carboxylate solutions. Hydrometallurgy 35, 251 1994

    Article  CAS  Google Scholar 

  8. H. Kumazawa, K. Oki, H.M. Cho E. Sada: Hydrothermal synthesis of ultrafine ferrite particles. Chem. Eng. Commun. 115, 25 1992

    Article  CAS  Google Scholar 

  9. Y. Konishi, T. Kawamura S. Asai: Preparation and characterization of ultrafine nickel ferrite powders by hydrolysis of iron(III)–nickel carboxylate dissolved in organic solvent. Ind. Eng. Chem. Res. 35, 320 1996

    Article  CAS  Google Scholar 

  10. H.M. Yang, X.C. Zhang, W.Q. Ao G.Z. Qiu: Formation of NiFe2O4 nanoparticles by mechanochemical reaction. Mater. Res. Bull. 39, 833 2004

    Article  CAS  Google Scholar 

  11. X.W. Teng H. Yang: Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles. J. Mater. Chem. 14, 774 2004

    Article  CAS  Google Scholar 

  12. S.H. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang G.X. Li: Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273 2004

    Article  CAS  Google Scholar 

  13. H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen Y.D. Li: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. Engl. 44, 2782 2005

    Article  CAS  Google Scholar 

  14. T. Hyeon, S.S. Lee, J. Park, Y. Chung H.B. Na: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 2001

    Article  CAS  Google Scholar 

  15. S. Yu G.M. Chow: Carboxyl group (CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications. J. Mater. Chem. 14, 2781 2004

    Article  CAS  Google Scholar 

  16. S.A. Gomez-Lopera, R.C. Plaza A.V. Delgado: Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J. Colloid Interface Sci. 240, 40 2001

    Article  CAS  Google Scholar 

  17. A.K. Gupta M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 1565 2005

    Article  CAS  Google Scholar 

  18. J. Joo, S.G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon T. Hyeon: Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli. J. Phys. Chem. B 109, 15297 2005

    Article  CAS  Google Scholar 

  19. J. Joo, S.G. Kwon, J.H. Yu T. Hyeon: Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions. Adv. Mater. 17, 1873 2005

    Article  CAS  Google Scholar 

  20. M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin A. Vioux: Mixed oxides SiO2–ZrO2 and SiO2–TiO2 by a non-hydrolytic sol-gel route. J. Mater. Chem. 6, 1665 1996

    Article  CAS  Google Scholar 

  21. M. Andrianainarivelo, R.J.P. Corriu, D. Leclercq, P.H. Mutin A. Vioux: Nonhydrolytic sol-gel process: Aluminium and zirconium titanate gels. J. Sol.-Gel Sci. Technol. 8, 89 1997

    CAS  Google Scholar 

  22. J. Tang, J. Fabbri, R.D. Robinson, Y.M. Zhu, I.P. Herman, M.L. Steigerwald L.E. Brus: Solid-solution nanoparticles: Use of a nonhydrolytic sol-gel synthesis to prepare HfO2 and HfxZr1−xO2 nanocrystals. Chem. Mater. 16, 1336 2004

    Article  CAS  Google Scholar 

  23. V.G. Kessler, G.I. Spijksma, G.A. Seisenbaeva, S. Hakansson, D.H.A. Blank H.J.M. Bouwmeester: New insight in the role of modifying ligands in the sol-gel processing of metal alkoxide precursors: A possibility to approach new classes of materials. J. Sol.-Gel Sci. Technol. 40, 163 2006

    Article  CAS  Google Scholar 

  24. F. Shojai, A.B.A. Pettersson, T. Mantyla J.B. Rosenholm: Electrostatic and electrosteric stabilization of aqueous slips of 3Y–ZrO2 powder. J. Eur. Ceram. Soc. 20, 277 2000

    Article  CAS  Google Scholar 

  25. N.Q. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong V.P. Dravid: Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4, 383 2004

    Article  CAS  Google Scholar 

  26. Y.T. Tao: Structural comparison of self-assembled monolayers of n-alkanoic acid on the surface of silver, copper and aluminum. J. Am. Chem. Soc. 115, 4350 1993

    Article  CAS  Google Scholar 

  27. F. Soderlind, H. Pedersen, R.M. Petoral, P.O. Kall K. Uvdal: Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J. Colloid Interface Sci. 288, 140 2005

    Article  Google Scholar 

  28. L.F. Shen, P.E. Laibinis T.A. Hatton: Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir 15, 447 1999

    Article  CAS  Google Scholar 

  29. J.M. Vargas, L.M. Socolovsky, M. Knobel D. Zanchet: Dipolar interaction and size effects in powder samples of colloidal iron oxide nanoparticles. Nanotechnology 16, S285 2005

    Article  CAS  Google Scholar 

  30. H. Nathani R.D.K. Misra: Surface effects on the magnetic behavior of nanocrystalline nickel ferrites and nickel ferrite–polymer nanocomposites. Mater. Sci. Eng., B 113, 228 2004

    Article  Google Scholar 

  31. F. Bodker, M.F. Hansen, C.B. Koch S. Morup: Particle interaction effects in antiferromagnetic NiO nanoparticles. J. Magn. Magn. Mater. 221, 32 2000

    Article  CAS  Google Scholar 

  32. V. Patil, K.S. Mayya, S.D. Pradhan M. Sastry: Evidence for novel interdigitated bilayer formation of fatty acids during three-dimensional self-assembly on silver colloidal particles. J. Am. Chem. Soc. 119, 9281 1997

    Article  CAS  Google Scholar 

  33. C.B. Murray, S.H. Sun, H. Doyle T. Betley: Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bull. 26, 981 2001

    Article  Google Scholar 

  34. M. Yin, A. Willis, F. Redl, N.J. Turro S.P. O’Brien: Influence of capping groups on the synthesis of gamma-Fe2O3 nanocrystals. J. Mater. Res. 19, 1208 2004

    Article  CAS  Google Scholar 

  35. J. Park, K.J. An, Y.S. Hwang, J.G. Park, H.J. Noh, J.Y. Kim, J.H. Park, N.M. Hwang T. Hyeon: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891 2004

    Article  CAS  Google Scholar 

  36. J. Park, E. Kang, S.U. Son, H.M. Park, M.K. Lee, J. Kim, K.W. Kim, H.J. Noh, J.H. Park, C.J. Bae, J.G. Park T. Hyeon: Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 17, 429 2005

    Article  CAS  Google Scholar 

  37. E. Kang, J. Park, Y. Hwang, M. Kang, J.G. Park T. Hyeon: Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals. J. Phys. Chem. B 108, 13932 2004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of this work by Academic Research Fund of National University of Singapore and the Office of Naval Research, USA, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.M. Chow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Chow, G. Nonhydrolytic sol-gel synthesis: Microstructural and morphological study on nickel ferrite nanocrystals coated with oleic acid. Journal of Materials Research 23, 1922–1930 (2008). https://doi.org/10.1557/JMR.2008.0239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0239

Navigation