Skip to main content
Log in

Thermodynamic descriptions of the Cu–Zn system

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Cu–Zn is an important binary alloy system. In the interested temperature range from 300 to 1500 K, there are eight phases, liquid, Cu, β, β′, γ, δ, ϵ, and Zn phases. The thermodynamic descriptions of the Cu–Zn system are reassessed using the CALPHAD method. A new description of liquid phase and simplified description of body-centered cubic (bcc) phase are proposed. Good agreement has been found among the calculated thermodynamic properties, phase diagram, and the experimental information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
TABLE II.
TABLE III.
TABLE IV.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE V.
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S.L. Hoyt: On the copper-rich kalchoids. J. Inst. Met. 10(2), 235 1904

    Google Scholar 

  2. W. Campbell: A note on the constitution of certain tin-bearing brasses. ASTM Proc., 105, (1920).

    Google Scholar 

  3. D.J. Strawbridge, W. Hume-Rothery, A.T. Little: The constitution of aluminum–copper–magnesium–zinc alloys. at 460 °C. J. Inst. Met. 74, 191 1948

    Google Scholar 

  4. Registration Record of International Alloys Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys The Aluminum Association Washington, DC 1987

  5. C-Y. Chou, S-W. Chen: Phase equilibria of the Sn–Zn–Cu ternary system. Acta Mater 54(9), 2393 2006

    Article  CAS  Google Scholar 

  6. C-Y. Chou, S-W. Chen, Y-S. Chang: Interfacial reactions in the Sn–9Zn–(xCu)Cu and Sn–9Zn–(xCu)Ni couples. J. Mater. Res. 21(7), 1849 2006

    Article  CAS  Google Scholar 

  7. K. Fitzner, D. Jendrzejczyk, W. Gierlotka: Ninth Seminar Diffusion and Thermodynamics of Materials 2006 Brno, Czech Republic, Sept 13–15 2006

    Google Scholar 

  8. O. Bauer, M. Hansen: Der aufbau der kupfer–zinklegierungen. Z. Metallkd 19, 423 1927 in German

    CAS  Google Scholar 

  9. R. Ruer, K. Kremers: Über die Bestimmung der Temperatur des Endes der Erstarrung bei Mischkristallreihen mit Hilfe von Erhitzungskurven. Z. Anorg. Chem 184, 193 1929 in German

    Article  CAS  Google Scholar 

  10. J. Shramm: An equilibrium study in the Cu–Zn system. Metallwirtschaft 14, 995–1001 1047–1050 1935

    Google Scholar 

  11. M. Hansen: Handbook of Binary Alloys Springer-Verlag Berlin 1936 652–672

    Google Scholar 

  12. G.V. Raynor: Annotated Equilibrium Diagram Series, No. 3 (The Institute of Metals, London, 1944)

    Google Scholar 

  13. T.B. Massalski, J.L. Murray, L.H. Bennet, H. Baker: Binary Alloy Phase Diagrams, edited by T.B. Massalski American Society for Metals Materials Park, OH 1986

  14. G. Shinoda, Y. Amano: The eutectoid transformation of the β′ phase in Cu–Zn alloys. Trans. Jpn. Inst. Met. 1, 54 1960

    Article  CAS  Google Scholar 

  15. S.S. Rao, T.R. Anantharaman: Constitution of brasses below 500 °C. Z. Metallkd. 60, 312 1969

    CAS  Google Scholar 

  16. K. Parameswaran, G. Healy: A calorimetric investigation of the copper–zinc system. Met. Trans. B 9B, 657 1978

    Article  CAS  Google Scholar 

  17. H-O. von Samson-Himmelstjerna: Heat capacity and heat of formation of molten alloys. Z. Metallkd. 28, 197 1936

    Google Scholar 

  18. O.J. Kleppa, R.C. King: Heat of formation of the solid solution of zinc, gallium and germanium in copper. Acta Metall. 10, 1183 1962

    Article  CAS  Google Scholar 

  19. R.L. Orr, B.B. Argent: Heats of formation of the α-brasses. Trans. Faraday Soc. 61, 2126 1965

    Article  CAS  Google Scholar 

  20. F. Korber, W. Oelsen: On the thermochemistry of alloys, III—Heat of formation of binary cast alloys of iron–antimony, cobalt–antimony, nickel–antimony, cobalt–tin, nickel–tin, copper–tin and copper–zinc. Mitt. K. W. I. Fur Eisenforschung. 19, 202 1937

    Google Scholar 

  21. Z. Weibke: On the heat of formation in the copper–zinc system. Z. Anorg. Chem. 323, 289 1937

    Article  Google Scholar 

  22. G.R. Blair, D.B. Downie: A calorimetric study of silver–zinc and copper–zinc alloys. Met. Sci. J. 4, 1 1979

    Google Scholar 

  23. A. Schneider, H. Schmid: Vapour pressure of zinc and cadmium over their binary liquid alloys with copper, silver and gold. Z. Electrochem. 48, 627 1942

    CAS  Google Scholar 

  24. L.H. Everett, P.W.M. Jacobs, J.A. Kitchner: The activity of zinc in liquid copper–zinc alloys. Acta Metall. 5, 281 1957

    Article  CAS  Google Scholar 

  25. D.B. Downie: Thermodynamic and structural properties of liquid zinc/copper alloys. Acta Metall. 12, 875 1964

    Article  CAS  Google Scholar 

  26. T. Azakami, A. Yazawa: Activities of ink and cadmium in liquid copper base alloys. J. Min. Met. Inst. Jpn. 84, 1663 1968

    CAS  Google Scholar 

  27. S.L. Solovev, M.V. Knyazev, Y.I. Ivanov, A.V. Vanyukov: Mass spectrometric study of the partial characteristics of zinc in copper–zinc system. Zavod. Lab. 45, 841 1979

    CAS  Google Scholar 

  28. S. Sugino, H. Hagiwara: Activity of zinc in molten copper and copper–gold alloys. Nippon Kinzoku Gakaishi 50, 186 1986

    CAS  Google Scholar 

  29. W. Leitgebel: Evaporation of metals and alloys under atmospheric pressure. Z. Angor. Chem. 202, 305 1931

    CAS  Google Scholar 

  30. E.H. Baker: Vapour pressure and thermodynamic behaviour of liquid zinc–copper alloys at 1150 °C. Trans. Inst. Min. Metall. C 79, C1 1970

    CAS  Google Scholar 

  31. O.J. Kleppa, C.E. Thalmayer: An E.M.F. investigation of binary liquid alloys rich in zinc. J. Phys. Chem. 63, 1953 1959

    Article  CAS  Google Scholar 

  32. U. Gerling, B. Predel: On the thermodynamic properties of liquid copper–zinc alloys. Z. Metallkd. 71, 158 1980

    CAS  Google Scholar 

  33. B.B. Argent, D.W. Wakeman: Thermodynamic properties of solid solutions, Part I—Copper + zinc solid solution. Trans. Faraday Soc. 54, 799 1958

    Article  CAS  Google Scholar 

  34. D.B. Masson, J. Sheu: Variation in the composition dependence of the activity coefficient terminal solid solution of Ag–Zn, Ag–Cd and Cu–Zn. Metall. Trans. 1, 3005 1970

    Article  CAS  Google Scholar 

  35. W. Seith, W. Krauss: The diffusion and vapour pressure in zinc in brasses. Z. Electrochem. 44, 98 1938

    CAS  Google Scholar 

  36. R. Hargreaves: The vapour pressure of zinc in brasses. J. Inst. Met. 64, 115 1939

    Google Scholar 

  37. J.P. Pemsler, E.J. Rapperport: Thermodynamic activity measurements using atomic absorption: copper–zinc. Trans. AIME 245, 1395 1969

    CAS  Google Scholar 

  38. A. Olander: An electrochemical investigation of brasses. Z. Phys. Chem. 164, 428 1933.9

    Google Scholar 

  39. PURE 4.4 SGTE Pure Elements (Unary) Database (Scientific Group Thermodata Europe, 1991–2006)

  40. P.J. Spencer: A thermodynamic evaluation of the Cu–Zn system. Calphad 10, 175 1986

    Article  CAS  Google Scholar 

  41. M. Kowalski, P.J. Spencer: Thermodynamic reevaluation of the Cu–Zn system. J. Phase Equilibria 14, 432 1993

    Article  CAS  Google Scholar 

  42. ThermoCalc v. R., (Foundation of Computational Thermodynamics, Stockholm, Sweden, 2006).

  43. Pandat, CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI 5371 9

  44. T. Jantzen, P.J. Spencer: Thermodynamic assessments of the Cu–Pb–Zn and Cu–Sb–Zn systems. Calphad 22, 417 1998

    Article  CAS  Google Scholar 

  45. P.W. Atkins, J. de Paula: Atkins’ Physical Chemistry, 7th ed. (Oxford University Press, 2001)

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge financial support from the National Science Council of Taiwan (NSC95-2221-E-007-205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinn-wen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gierlotka, W., Chen, Sw. Thermodynamic descriptions of the Cu–Zn system. Journal of Materials Research 23, 258–263 (2008). https://doi.org/10.1557/JMR.2008.0035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0035

Navigation