Skip to main content
Log in

On the elastic effects in power-law indentation creep with sharp conical indenters

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The elastic deformation contribution can significantly affect the measurement of the strain-rate sensitivity (SRS) of the plastic flow stress by indentation methods. In this paper, the effect of such elastic contribution is critically analyzed using an extension of a previous treatment developed by the authors for the elastic effects on the indentation of strain-hardening materials [J. Alkorta et al., J. Mater. Res.20, 432 (2005)]. The analytical model is calibrated and validated through finite element calculations. The results show that when the elastic contribution to the total deformation is not negligible then the measured SRS is significantly lower than the real one. A satisfactory correction factor for the apparent SRS exponent is proposed based on parameters directly accessible to instrumented indentation test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. F.R.N. Nabarro: Creep in commercially pure metals. Acta Mater. 54, 263 2006

    Article  CAS  Google Scholar 

  2. C.D. Davis S.C. Hunter: Assessment of the strain-rate sensitivity of metals by indentation with conical indenters. J. Mech. Phys. Solids 8, 235 1960

    Article  CAS  Google Scholar 

  3. A.G. Atkins, A. Silverio D. Tabor: Indentation hardness and creep of solids. J. Inst. Met. 94, 369 1966

    CAS  Google Scholar 

  4. T.O. Mulhearn D. Tabor: Creep and hardness of metals—A physical study. J. Inst. Met. 89, 7 1960

    CAS  Google Scholar 

  5. B. Roebuck E.A. Almond: Equivalence of indentation and compressive creep tests on a Wc Co hardmetal. J. Mater. Sci. Lett. 1, 519 1982

    Article  CAS  Google Scholar 

  6. P.M. Sargent M.F. Ashby: Indentation creep. Mater. Sci. Tech. Ser. 8, 594 1992

    Article  CAS  Google Scholar 

  7. W.B. Li, J.L. Henshall, R.M. Hooper K.E. Easterling: The mechanisms of indentation creep. Acta Metall. Mater. 39, 3099 1991

    Article  CAS  Google Scholar 

  8. A.F. Bower, N.A. Fleck, A. Needleman N. Ogbonna: Indentation of a power law creeping solid. Proc. R. Soc. (London) A Mater. 441, 97 1993

    Google Scholar 

  9. B. Storakers P-L. Larsson: On Brinell and Boussinesq indentation of creeping solids. J. Mech. Phys. Solids 42, 307 1994

    Article  Google Scholar 

  10. Y.T. Cheng C.M. Cheng: Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81, 9 2001

    Article  CAS  Google Scholar 

  11. ISO-14577 (2002)

  12. W.H. Poisl, W.C. Oliver B.D. Fabes: The relationship between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10, 2024 1995

    Article  CAS  Google Scholar 

  13. M. Fujiwara M. Otsuka: Indentation creep of beta-Sn and Sn–Pb eutectic alloy. Mater. Sci. Eng., A 319, 929 2001

    Article  Google Scholar 

  14. H. Li A.H.W. Ngan: Size effects of nanoindentation creep. J. Mater. Res. 19, 513 2004

    Article  CAS  Google Scholar 

  15. H. Li A.H.W. Ngan: Indentation size effects on the strain rate sensitivity of nanocrystalline Ni–25at.%Al thin films. Scripta Mater. 52, 827 2005

    Article  CAS  Google Scholar 

  16. V. Bhakhri R.J. Klassen: Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part I. The deformation of three aluminum alloys at 473 K to 833 K. J. Mater. Sci. 41, 2259 2006

    Article  CAS  Google Scholar 

  17. S-Y. Chang, Y-S. Lee T-K. Chang: Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test. Mater. Sci. Eng., A 423, 52 2006

    Article  Google Scholar 

  18. R. Goodall T.W. Clyne: A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater. 54, 5489 2006

    Article  CAS  Google Scholar 

  19. M.J. Mayo W.D. Nix: A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 Wt-percent-Pb. Acta Metall. 36, 2183 1988

    Article  CAS  Google Scholar 

  20. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 2003

    Article  CAS  Google Scholar 

  21. B.N. Lucas, W.C. Oliver, G.M. Pharr J.L. Loubet: Time dependent deformation during indentation testing in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J.E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 233.

  22. B.N. Lucas W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 1999

    Article  Google Scholar 

  23. J. Alkorta J. Gil Sevillano: Measuring the strain rate sensitivity by instrumented indentation. Application to an ultrafine grain (equal channel angular-pressed) eutectic Sn–Bi alloy. J. Mater. Res. 19, 282 2004

    Article  CAS  Google Scholar 

  24. J. Alkorta, J.M. Martinez-Esnaola J. Gil Sevillano: Critical examination of strain rate sensitivity measurement by nanoindentation methods. Application to severely deformed niobium. Acta Mater. 2007 DOI: 10.1016/j.actamat.2007.10.039

    Google Scholar 

  25. A.A. Elmustafa, S. Kose D.S. Stone: The strain-rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22, 926 2007

    Article  CAS  Google Scholar 

  26. W.C. Oliver G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992

    Article  CAS  Google Scholar 

  27. J. Alkorta, J.M. Martinez-Esnaola J. Gil Sevillano: Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data. J. Mater. Res. 20, 432 2005

    Article  CAS  Google Scholar 

  28. J. Alkorta, J.M. Martinez-Esnaola J.G. Sevillano: Comments on: “Comment on the determination of mechanical properties from the energy dissipated during indentation,” by J. Malzbender, J. Mater. Res. 20, 1090 2005. J. Mater. Res. 21, 302 2006

    Article  Google Scholar 

  29. J. Alkorta: Nanocrystalline materials produced by SPD and their mechanical characterization by means of novel nanoindentation methods. Ph.D. Thesis, TECNUN (University of Navarra), San Sebastian, 2006

    Google Scholar 

  30. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 1965

    Article  Google Scholar 

  31. J.C. Hay, A. Bolshakov G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 1999

    Article  CAS  Google Scholar 

  32. N. Fujisawa M.V. Swain: On the indentation contact area of a creeping solid during constant-strain-rate loading by a sharp indenter. J. Mater. Res. 22, 893 2007

    Article  CAS  Google Scholar 

  33. I.G. Brodova, D.V. Bashlykov, A.B. Manukhin, V.V. Stolyarov E.P. Soshnikova: Formation of nanostructure in rapidly solidified Al–Zr alloy by severe plastic deformation. Scripta Mater. 44, 1761 2001

    Article  CAS  Google Scholar 

  34. B. Storakers, S. Biwa P.L. Larsson: Similarity analysis of inelastic contact. Int. J. Solids Struct. 34, 3061 1997

    Article  Google Scholar 

  35. Y.P. Cao, M. Dao J. Lu: A precise correcting method for the study of the superhard material using nanoindentation tests. J. Mater. Res. 22, 1255 2007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish Ministry of Science and Technology (project MAT2006-14341-C02-01), by the Basque Government (SAIOTEK 2006, Project UET 120905), and by the Belgian State (Belgian Science Policy, Interuniversity Attraction Poles (IAP) Programme project P6/24). J. Alkorta gratefully acknowledges the funding by the Torres Quevedo Programme of the Spanish Ministry of Education and Science and the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Alkorta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkorta, J., Martínez-Esnaola, J.M. & Sevillano, J.G. On the elastic effects in power-law indentation creep with sharp conical indenters. Journal of Materials Research 23, 182–188 (2008). https://doi.org/10.1557/JMR.2008.0011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0011

Navigation