Skip to main content
Log in

Electrospinning of polyvinylidene difluoride-based nanocomposite fibers

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Polyvinylidene difluoride fibers and composite fibers with Ni–Zn ferrite nanoparticles and rutile nanoparticles were prepared by electrospinning dimethyl formamide (DMF) solutions. To prevent agglomeration, the ferrite nanoparticles were coated with silica, allowing the formation of a stable ferrofluid in DMF as well as the formation of homogeneous fibers. The rutile nanoparticles could be spun with a uniform distribution within the fiber without silica coating. The effects of various solution properties (viscosity and solids loading for composite fibers) and processing parameters (flow rate and voltage) on fiber morphology and diameter were studied to identify a processing window that resulted in the formation of smooth, defect-free fibers. Of the variables examined, fiber diameter was found to be the most strongly dependent on the viscosity of the electrospinning solution. Infrared spectroscopy revealed that the inclusion of well-dispersed nanoparticles in the electrospun fibers enhanced the presence of the ferroelectric phase in the composite fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. N.A. Hill: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 2000

    Article  CAS  Google Scholar 

  2. J. van Suchtelen: Product composites: A new application of composite materials. Philips Res. Reports 27, 28 1972

    Google Scholar 

  3. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan V.M. Laletin: Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 2001

    Article  Google Scholar 

  4. J. Ryu, A.V. Carazo, K. Uchino H-E. Kim: Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferrite particulate composites. J. Electroceram. 7, 17 2001

    Article  CAS  Google Scholar 

  5. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd R. Ramesh: Mutiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661 2004

    Article  CAS  Google Scholar 

  6. Y-M. Chiang, D. Burnie III W.D. Kingery: Physical Ceramics: Principles for Ceramic Science and Engineering John Wiley & Sons, Inc. New York 1997 472

    Google Scholar 

  7. L. Néel: Thermoremnant magnetization of fine powders. Rev. Mod. Phys. 25, 293 1953

    Article  Google Scholar 

  8. A.J. Lovinger: Ferroelectric polymers. Science 220, 1115 1983

    Article  CAS  Google Scholar 

  9. H.S. Nalwa: Ferroelectric Polymers: Chemistry, Physics and Applications Marcel Dekker, Inc. New York 1995 63–181

    Book  Google Scholar 

  10. X. Ren Y. Dzenis: Novel continuous poly(vinylidene fluoride) nanofibers in Smart Nanotextiles, edited by X. Tao, G. Tröster, and D. Diamond (Mater. Res. Soc. Symp. Proc. 920, Warrendale, PA, 2006), 55–61

  11. S. Koombhongse, W. Liu D.H. Reneker: Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci., Part B: Polym. Phys. 39, 2598 2001

    Article  CAS  Google Scholar 

  12. Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang J. Sheng: Preparation and properties of electrospun poly(vinylidene fluoride). Membranes J. Appl. Polym. Sci. 97, 466 2005

    Article  CAS  Google Scholar 

  13. D. Li Y. Xia: Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 16, 1151 2004

    Article  CAS  Google Scholar 

  14. M. Wang, H. Singh, T.A. Hatton G.C. Rutledge: Field-responsive superparamagnetic composite nanofibers by electrospinning. Polymer 45, 5505 2004

    Article  CAS  Google Scholar 

  15. W. Sigmund, J. Yuh, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor J.C. Nino: Processing and structure relationships in electrospinning of ceramic fiber systems. J. Am. Ceram. Soc. 89, 395 2006

    Article  CAS  Google Scholar 

  16. F.A. Tourinho, R. Franck R. Massart: Aqueous ferrofluids based on manganese and cobalt ferrites. J. Mater. Sci. 25, 3249 1990

    Article  CAS  Google Scholar 

  17. A.P. Philipse, M.P.B. van Bruggen C. Pathmamanoharan: Magnetic silica dispersions: Preparation and stability of surface-modified silica particles with a magnetic core. Langmuir 10, 92 1994

    Article  CAS  Google Scholar 

  18. B.T. Naughton, P. Majewski D.R. Clarke: Magnetic properties of nickel-zinc ferrite torroids prepared from nanoparticles. J. Am. Ceram. Soc. 90, 3547 2007

    Article  CAS  Google Scholar 

  19. B.D. Cullity S.R. Stock Elements of X-Ray Diffraction 3rd ed. Prentice Hall Upper Saddle River, NJ 2001 170

    Google Scholar 

  20. M.M. Hohman, M. Shin, G. Rutledge M.P. Brenner: Electrospinning and electrically forced jets: I. Stability theory. Phys. Fluids 13, 2201 2001

    Article  CAS  Google Scholar 

  21. M.M. Hohman, M. Shin, G. Rutledge M.P. Brenner: Electrospinning and electrically forced jets: II. Applications. Phys. Fluids 13, 2221 2001

    Article  CAS  Google Scholar 

  22. D.H. Reneker, A.L. Yarin, H. Fong S. Koombhongse: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 4531 2000

    Article  CAS  Google Scholar 

  23. A. Salimi A.A. Yousefi: Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J. Polym. Sci., Part B: Polym. Phys. 42, 3487 2004

    Article  CAS  Google Scholar 

  24. M. Mouallem-Bahout, S. Bertrand O. Peña: Synthesis and characterization of Zn1–xNixFe2O4 spinels prepared by a citrate precursor. J. Solid State Chem. 178, 1080 2005

    Article  CAS  Google Scholar 

  25. M. Ocaña, V. Fornés, J.V. García Ramos C.J. Serna: Factors affecting the infrared and Raman spectra of rutile powders. J. Solid State Chem. 75, 364 1988

    Article  Google Scholar 

  26. G. Busca, G. Ramis, J.M. Gallardo Amores, V.S. Escribano P. Piaggio: FT Raman and FTIR studies of titanias and metatitanate powders. J. Chem. Soc., Faraday Trans. 90, 3181 1994

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ceramics Program of the National Science Foundation GOALI program under Grant No. DMR-0203785. This work made use of Materials Research Laboratory (MRL) Central Facilities supported by the MRSEC Program of the National Science Foundation under Award No. DMR00-80034. The work done at Teledyne Scientific Company was supported by the National Institutes of Health under Grant No. 1 R2 EB003900-01 A2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.S. Andrew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrew, J., Mack, J. & Clarke, D. Electrospinning of polyvinylidene difluoride-based nanocomposite fibers. Journal of Materials Research 23, 105–114 (2008). https://doi.org/10.1557/JMR.2008.0003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0003

Navigation