Skip to main content
Log in

Enhancement of the electroactive β phase in electrospun PVDF fibers by incorporation of CaCO3-based Cu hybrid particles prepared using plasma–liquid electrochemical synthesis

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, electrospun polyvinylidene fluoride (PVDF) nanofibers containing filler materials composed of copper oxide and calcium carbonate with different contents were prepared to enhance the electroactive β phase content in the PVDF matrix. The fillers were synthesized using the plasma–liquid electrochemical synthesis method, where copper, a tungsten electrode, and seawater were used as the anode, cathode, and electrolyte, respectively. The atmospheric plasma was generated by applying a high voltage between the electrolyte surface and the tungsten electrode 1 mm above. The electrochemical reactions for particle synthesis were promoted by plasma irradiation, with the charged particles entering the electrolyte. The PVDF solution for the electrospun nanofiber was mixed with the synthesized particles that were a mixture of copper oxide with a dominant fraction of calcium carbonate, as determined using the X-ray diffraction patterns. The structural and the electrical properties of the as-prepared electrospun nanofibers were characterized using microscopy, spectroscopy, and electrical testing. Small loadings of the synthesized particles into in the PVDF matrix induced clear changes in terms of crystallization, morphology, and electrical properties of the prepared materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.L. Wang, Adv. Mater. 24, 280 (2012)

    Google Scholar 

  2. W. Seung, M.K. Gupta, K.Y. Lee, K.S. Shin, J.H. Lee, T.Y. Kim, S. Kim, J. Lin, J.H. Kim, S.W. Kim, ACS Nano 9, 3501 (2015)

    Google Scholar 

  3. S. Chandrasekaran, C. Bowen, J. Roscow, Y. Zhang, D.K. Dang, E.J. Kim, R.D.K. Misra, L. Deng, J.S. Chung, S.H. Hur, Phys. Rep. 792, 1 (2019)

    ADS  MathSciNet  Google Scholar 

  4. K.J. Kim, F. Cottone, S. Goyal, J. Punch, Bell Labs Tech. J. 15, 7 (2010)

    Google Scholar 

  5. S. Meninger, J.O. Mur-Miranda, R. Amirtharajah, A. Chandrakasan, J.H. Lang, IEEE Trans. Very Large Scale Integr. VLSI Syst. 9, 64 (2001)

    Google Scholar 

  6. Z.L. Wang, J. Song, Science 312, 242 (2006)

    ADS  Google Scholar 

  7. P. Thakur, A. Kool, B. Bagchi, N.A. Hoque, S. Das, P. Nandy, RSC Adv 5, 62819 (2015)

    ADS  Google Scholar 

  8. E. Zdraveva, J. Fang, B. Mijovic, T. Lin, “Electrospun Nanofibers”, Structure and Properties of High-Performance Fibers (Woodhead Publishing, Duxford, 2017), p. 267

    Google Scholar 

  9. Y.L. Liu, Y. Li, J.T. Xu, Z.Q. Fan, A.C.S. Appl, Mater. Interfaces 2, 1759 (2010)

    Google Scholar 

  10. J.S. Andrew, D.R. Clarke, Langmuir 24, 8435 (2008)

    Google Scholar 

  11. S. Huang, W.A. Yee, W.C. Tjiu, Y. Liu, M. Kotaki, Y.C.F. Boey, J. Ma, T. Liu, X. Lu, Langmuir 24, 13621 (2008)

    Google Scholar 

  12. L. Yu, P. Cebe, Polymer 50, 2133 (2009)

    Google Scholar 

  13. Z.M. Dang, D. Xie, C.Y. Shi, Appl. Phys. Lett 91, 222902 (2007)

    ADS  Google Scholar 

  14. N. Jahan, F. Mighri, D. Rodrigue, A. Ajji, J. Appl. Polym. Sci. 134, 44940 (2017)

    Google Scholar 

  15. J.S.D. Campos, A.A. Ribeiro, C.X. Cardoso, Mater. Sci. Eng. B 136, 123 (2007)

    Google Scholar 

  16. W. Ma, X. Wang, J. Zhang, J. Polym. Sci. B Polym. Phys. 48, 2154 (2010)

    ADS  Google Scholar 

  17. E. Kar, N. Bose, S. Das, Phys. Chem. Chem. Phys. 17, 22784 (2015)

    Google Scholar 

  18. J. Li, P. Khanchaitit, K. Han, Q. Wang, Chem. Mater. 22, 5350 (2010)

    Google Scholar 

  19. Z. Cui, N.T. Hassankiadeh, Y. Zhuang, E. Drioli, Y.M. Lee, Prog. Polym. Sci. 51, 94 (2015)

    Google Scholar 

  20. A. Samadi, S.M. Hosseini, R. Ahmadi, Org. Electron. 59, 149 (2018)

    Google Scholar 

  21. A. Samadi, R. Ahmadi, S.M. Hosseini, Org. Electron. 75, 105405 (2019)

    Google Scholar 

  22. B. Dutta, E. Kar, N. Bose, S. Mukherjee, RSC Adv. 5, 105422 (2015)

    ADS  Google Scholar 

  23. W. Jia, E. Reitz, P. Shimpi, E.G. Rodriguez, P.X. Gao, Y. Lei, Mater. Res. Bull. 44, 1681 (2009)

    Google Scholar 

  24. J.G. Zhao, S.J. Liu, S.H. Yang, S.G. Yang, Appl. Surf. Sci. 257, 9678 (2011)

    ADS  Google Scholar 

  25. G. Yuan, J. Zhu, F. Xie, X. Chang, J. Nanosci. Nanotechnol. 10, 5258 (2010)

    Google Scholar 

  26. S.O. Kang, S. Hong, J. Choi, J.S. Kim, I. Hwang, I.S. Byun, K.S. Yun, B.H. Park, Appl. Phys. Lett. 95, 092108 (2009)

    ADS  Google Scholar 

  27. D. Mariotti, R.M. Sankaran, J. Phys. D Appl. Phys. 43, 323001 (2010)

    ADS  Google Scholar 

  28. L. Lin, S.A. Starostin, S. Li, V. Hessel, Phys. Sci. Rev. 3, 1 (2018)

    Google Scholar 

  29. C. Du, M. Xiao, Sci. Rep. 4, 7339 (2014)

    ADS  Google Scholar 

  30. P. Lu, Y. Xia, Langmuir 29, 7070 (2013)

    Google Scholar 

  31. D. Chen, T. Sharma, J.X.J. Zhang, Sens. Actuators A 216, 196 (2014)

    Google Scholar 

  32. S.W. Won, S.M. Jo, W.S. Lee, Y.R. Kim, Adv. Mater. 15, 2027 (2003)

    ADS  Google Scholar 

  33. Z. Zhao, J. Li, X. Yuan, X. Li, Y. Zhang, J. Sheng, J. Appl. Polym. Sci. 97, 466 (2005)

    Google Scholar 

  34. X. Li, X. Lu, J. Appl. Polym. 101(5), 2944 (2006)

    Google Scholar 

  35. M. Kanik, O. Aktas, H.S. Sen, E. Durgun, M. Bayindir, ACS Nano 8, 9311 (2014)

    Google Scholar 

  36. S. Jana, S. Garain, S. Sen, D. Mandal, Phys. Chem. Chem. Phys. 17, 17429 (2015)

    Google Scholar 

  37. J. Buckley, P. Cebe, D. Cherdack, J. Crawford, B.S. Ince, M. Jenkins, J. Pan, M. Reveley, N. Washington, N. Wolchover, Polymer 47, 2411 (2006)

    Google Scholar 

  38. R. Gregorio, M. Cestari, J. Polym. Sci. B 32, 859 (1994)

    Google Scholar 

  39. F. Khatun, N.A. Hoque, P. Thakur, N. Sepay, S. Roy, B. Bagchi, A. Kool, S. Das, Energy Technol. 5, 2205 (2017)

    Google Scholar 

  40. X. Cai, T. Lei, D. Sun, L. Lin, RSC Adv. 7, 15382 (2017)

    ADS  Google Scholar 

  41. P. Martins, A.C. Lopes, Prog. Polym. Sci. 39, 683 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghyeon Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Yang, J. Enhancement of the electroactive β phase in electrospun PVDF fibers by incorporation of CaCO3-based Cu hybrid particles prepared using plasma–liquid electrochemical synthesis. J. Korean Phys. Soc. 78, 27–33 (2021). https://doi.org/10.1007/s40042-020-00025-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00025-7

Keywords

Navigation