Skip to main content
Log in

Strain rate sensitivity in nanoindentation creep of hard materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper examines the strain rate sensitivity of the hardness νH in relation to the strain rate sensitivity of the flow stress (νσ) in hard solids when there is friction between the indenter and specimen. Finite element analysis is used to simulate indentation creep of von Mises solids with a range of hardness/modulus ratios (H/E*) and coefficients of friction, μ, for indenter–specimen contact. We find that, although the level of H is affected by friction, the ratio νHσ as a function of H/E* remains nearly unchanged. Measurements indicate that νH = 0.015 ± 0.02 for fused silica, from which, based on the present analysis, νσ ≈ 0.022 and from which an activation volume of 0.13 nm3 can be estimated for plastic deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. A.A. Elmustafa, S. Kose D.S. Stone: The strain rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22(4), 926 2007

    Article  CAS  Google Scholar 

  2. A.G. Atkins, A. Silverio D. Tabor: Indentation hardness and creep of solids. J. Inst. Metals 94(11), 369 1966

    CAS  Google Scholar 

  3. A.F. Bower, N.A. Fleck, A. Needleman N. Ogbonna: Indentation of a power law creeping solid. Proc. R. Soc. London Ser. A (Math. Phys. Sci.) 441, 1911 97 1993

    Google Scholar 

  4. Y-T. Cheng C-M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. Rep. R44(4–5), 91 2004

    Article  Google Scholar 

  5. R. Hill: Similarity analysis of creep indentation tests. Proc. R. Soc. London Ser. A (Math. Phys. Sci.) 436 (1898), 617 1992

    Google Scholar 

  6. B.N. Lucas W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans., A 30(3), 601 1999

    Article  Google Scholar 

  7. W.H. Poisl, W.C. Oliver B.D. Fabes: The relationship between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10(8), 2024 1995

    Article  CAS  Google Scholar 

  8. P.M. Sargent M.F. Ashby: Indentation creep. Mater. Sci. Technol. 8(7), 594 1992

    Article  CAS  Google Scholar 

  9. R.J. Asaro S. Suresh: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53(12), 3369 2005

    Article  CAS  Google Scholar 

  10. D.L. Goldsby, A. Rar, G.M. Pharr T.E. Tullis: Nanoindentation creep of quartz, with implications for rate- and state-variable friction laws relevant to earthquake mechanics. J. Mater. Res. 19(1), 357 2004

    Article  CAS  Google Scholar 

  11. D. Jang M. Atzmon: Grain-size dependence of plastic deformation in nanocrystalline Fe. J. Appl. Phys. 93(11), 9282 2003

    Article  CAS  Google Scholar 

  12. H. Li A.H.W. Ngan: Indentation size effects on the strain rate sensitivity of nanocrystalline Ni-25at.%Al thin films. Scripta Mater. 52(9), 827 2005

    Article  CAS  Google Scholar 

  13. C. Shou-Yi, L. Yu-Shuien C. Ting-Kui: Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test. Mater. Sci. Eng., A 423(1–2), 52 2006

    Google Scholar 

  14. S.P. Wen, F. Zeng, Y. Gao F. Pan: Indentation creep behavior of nano-scale Ag/Co multilayers. Scripta Mater. 55(2), 187 2006

    Article  CAS  Google Scholar 

  15. K.B. Yoder, A.A. Elmustafa, J.C. Lin, R.A. Hoffman D.S. Stone: Activation analysis of deformation in evaporated molybdenum thin films. J. Phys. D: Appl. Phys. 36(7), 884 2003

    Article  CAS  Google Scholar 

  16. H. Conrad: Cryogenic properties of metals in High-Strength Materials Wiley Berkeley, CA 1964 436–509

    Google Scholar 

  17. A.H. Cottrell: Thermally activated plastic glide. Philos. Mag. Lett. 82(2), 65 2002

    Article  CAS  Google Scholar 

  18. U.F. Kocks, A.S. Argon M.F. Ashby: Thermodynamics and kinetics of slip in Progress in Materials Science Pergamon Press Oxford 1975 18, xviii

    Google Scholar 

  19. A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27(1), 47 1979

    Article  CAS  Google Scholar 

  20. S-P. Hannula, D. Stone C-Y. Li: Determination of time-dependent plastic properties by indentation load relaxation techniques in Electronic Packaging Materials Science, edited by E.A. Giess, K-N. Tu, and D.R. Uhlmann (Mater. Res. Soc. Symp. Proc. 40 Pittsburgh, PA, 1985 218

  21. D.S. Stone K.B. Yoder: Division of the hardness of molybdenum into rate-dependent and rate-independent components. J. Mater. Res. 9(10), 2524 1994

    Article  CAS  Google Scholar 

  22. A.A. Elmustafa D.S. Stone: Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51(2), 357 2003

    Article  CAS  Google Scholar 

  23. M.F. Tambwe, D.S. Stone, A.J. Griffin, H. Kung, Y.C. Lu M. Nastasi: Haasen plot analysis of the Hall–Petch effect in Cu-Nb nanolayer composites. J. Mater. Res. 14(2), 407 1999

    Article  CAS  Google Scholar 

  24. S.N.G. Chu J.C.M. Li: Impression creep; A new creep test. J. Mater. Sci. 12(11), 2200 1977

    Article  CAS  Google Scholar 

  25. S.N.G. Chu J.C.M. Li: Impression creep of beta-tin single crystals. Mater. Sci. Eng. 39(1), 1 1979

    Article  CAS  Google Scholar 

  26. K.L. Johnson: Contact Mechanics Cambridge University Press Cambridge, UK 1985 452

    Book  Google Scholar 

  27. D. Tabor: The hardness of solids. Rev. Phys. Technol. 1(3), 145 1970

    Article  Google Scholar 

  28. C. Meade R. Jeanloz: Frequency-dependent equation of state of fused silica to 10 GPa. Phys. Rev. B: Condens. Matter 35(1), 236 1987

    Article  CAS  Google Scholar 

  29. J. Malzbender, G. De With J. Den Toonder: The Ph2 relationship in indentation. J. Mater. Res. 15(5), 1209 2000

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.A. Elmustafa thanks the Summer Faculty Fellowship Research Program Office of Research, Old Dominion University (Grant No. 993003). D. Stone’s research was sponsored by the National Science Foundation (Award CMS-0528073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Elmustafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmustafa, A.A., Stone, D.S. Strain rate sensitivity in nanoindentation creep of hard materials. Journal of Materials Research 22, 2912–2916 (2007). https://doi.org/10.1557/JMR.2007.0374

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0374

Navigation