Skip to main content
Log in

AlN nanowires for Al-based composites with high strength and low thermal expansion

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Based on the synthesis of a sufficient amount of AlN nanowires (AlN-NWs), AlN-NWs/Al composites with homogenously distributed AlN-NWs were fabricated. Microstructural observations reveal that the interface between AlN-NWs and Al matrix is clean and bonded well, and no interfacial reaction product was formed at the nanowire-matrix boundary. Mechanical properties including yield and tensile strength of the composites were improved with AlN-NWs volume fraction changing from 5 to 15 vol%, and the maximum yield and tensile strengths of the composite were about 6 and 5 times, respectively, as high as those of Al matrix. Meanwhile, AlN-NWs effectively decreased the coefficient of thermal expansion (CTE) of the composites, and the CTE of 15 vol% composite was about one half that of Al matrix. The results obtained suggest that AlN nanowire is a promising reinforcement for optimizing the mechanical and thermal properties of metal matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
TABLE I.
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S. Iijima: Helical microtubules of graphitic carbon. Nature 56, 354 1991

    Google Scholar 

  2. A.M. Morales C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 1998

    Article  CAS  Google Scholar 

  3. Z.W. Pan, Z.R. Dai Z.L. Wang: Nanobelts of semiconducting oxides. Science 291, 1947 2001

    Article  CAS  Google Scholar 

  4. G. Zhan, J.D. Kuntz, J.E. Garay A.K. Mukherjee: Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes. Appl. Phys. Lett. 83, 1228 2003

    Article  CAS  Google Scholar 

  5. L. Ci J. Bai: Novel micro/nanoscale hybrid reinforcement: multiwalled carbon nanotubes on SiC particles. Adv. Mater. 16, 2021 2004

    Article  CAS  Google Scholar 

  6. W. Yang, H. Araki, C. Tang, S. Thaveethavorn, A. Kohyama, H. Suzuki T. Noda: Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites. Adv. Mater. 17, 1519 2005

    Article  CAS  Google Scholar 

  7. A.L. Geiger M. Jackson: Low-expansion MMCs boost avionics. Adv. Mater. Process. 136, 23 1989

    Google Scholar 

  8. C. Zweben: Metal-matrix composites for electronic packaging. JOM 44, 15 1992

    Article  CAS  Google Scholar 

  9. M.K. Premkumar, W.H. Hunt Jr. R.R. Sawtell: Aluminum composite materials for multichip modules. JOM 44, 24 1992

    Article  CAS  Google Scholar 

  10. S.M. Bradshaw J.L. Spicer: Combustion synthesis of aluminum nitride particles and whiskers. J. Am. Ceramic. Soc. 82, 2293 1999

    Article  CAS  Google Scholar 

  11. J.L. Huang C.H. Li: Microstructure and mechanical properties of aluminum nitride aluminum composite. J. Mater. Res. 9, 3153 1994

    Article  CAS  Google Scholar 

  12. S.W. Lai D.D. Chung: Superior high-temperature resistance of aluminum nitride particle-reinforced aluminum compared to silicon-carbide or alumina particle-reinforced aluminum. J. Mater. Sci. 29, 6181 1994

    Article  CAS  Google Scholar 

  13. M. Chedru, J.L. Chermant J. Vicens: Thermal properties and Young’s modulus of Al-AlN composites. J. Mater. Sci. Lett. 20, 893 2001

    Article  CAS  Google Scholar 

  14. A. Inoue, K. Nosaki, B.G. Kim, T. Yamaguchi T. Masumoto: Mechanical strength of ultra-fine Al-AlN composites produced by a combined method of plasma-alloy reaction, spray deposition and hot pressing. J. Mater. Sci. 28, 4398 1993

    Article  CAS  Google Scholar 

  15. J. Vicens, M. Chedru, H. Cubero J.L. Chermant: Effects of AlN additions and heat treatments on the compression behavior of Al-AlN composites. J. Mater. Sci. Lett. 21, 1505 2002

    Article  CAS  Google Scholar 

  16. Q. Zhang, G. Chen, G. Wu, Z. Xiu B. Luan: Property characteristics of a AlNp/Al composite fabricated by squeeze casting technology. Mater. Lett. 57, 1453 2003

    Article  CAS  Google Scholar 

  17. X. Chen K.E. Gonsalves: Synthesis and properties of an aluminum nitride/polyimide nanocomposite prepared by a nonaqueous suspension process. J. Mater. Res. 12, 1274 1997

    Article  CAS  Google Scholar 

  18. Q. Zhang, G. Wu, D. Sun B. Luan: Study on the thermal expansion and thermal cycling of AlNp/Al composites. J. Mater. Sci. Technol. 57, 1453 2003

    CAS  Google Scholar 

  19. J.S. Moya, J.E. Iglesias, J. Limpo, J.A. Escrina, N.S. Makhonin M.A. Rodriguez: Single crystal AlN fibers obtained by self-propagating high-temperature synthesis (SHS). Acta Mater. 45, 3089 1997

    CAS  Google Scholar 

  20. P.G. Caceres: Morphology and crystallography of aluminum nitride whiskers. J. Am. Ceram. Soc. 77, 977 1994

    Article  CAS  Google Scholar 

  21. J.A. Haber, P.C. Gibbons W.E. Buhro: Morphologically selective synthesis of nanocrystalline aluminum nitirde. Chem. Mater. 10, 4062 1998

    Article  CAS  Google Scholar 

  22. Y.J. Zhang, J. Liu, R.R. He, Q. Zhang, X.Z. Zhang J. Zhu: Synthesis of aluminum nitride nanowires from carbon nanotubes. Chem. Mater. 13, 3899 2001

    Article  CAS  Google Scholar 

  23. J. Liu, X. Zhang, Y. Zhang, R. He J. Zhu: Novel synthesis of AlN nanowires with controlled diameters. J. Mater. Res. 16, 3133 2001

    Article  CAS  Google Scholar 

  24. Q. Wu, Z. Hu, X. Wang, Y. Lu, X. Chen, H. Xu Y. Chen: Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J. Am. Chem. Soc. 125, 10176 2003

    Article  CAS  Google Scholar 

  25. L.W. Yin, Y. Bando, Y.C. Zhu, M.S. Li, C.C. Tang D. Golberg: Single-crystalline AlN nanotubes with carbonlayer coatings on the outer and inner surfaces via a multiwalled-carbon-nanotube-template-induced route. Adv. Mater. 17, 213 2005

    Article  CAS  Google Scholar 

  26. Q. Zhao, H. Zhang, X. Xu, Z. Wang, J. Xu, D. Yu, G. Li F. Su: Optical properties of highly ordered AlN nanowire arrays grown on sapphire substrate. Appl. Phys. Lett. 86, 193101 2005

    Article  Google Scholar 

  27. S.C. Shi, C.F. Chen, S. Chattopadhyay, Z.H. Lan, K.H. Chen L.C. Chen: Growth of single-crystalline wurtzite aluminum nitride nanotips with a self-selective apex angle. Adv. Funct. Mater. 15, 781 2005

    Article  CAS  Google Scholar 

  28. J.H. He, R. Yang, Y.L. Chueh, L.J. Chou, L.J. Chen Z.L. Wang: Aligned AlN nanorods with multi-tipped surfaces-growth, field-emission, and cathodoluminescence properties. Adv. Mater. 18, 650 2006

    Article  CAS  Google Scholar 

  29. Y.B. Tang, H.T. Cong, Z.M. Wang H.M. Cheng: Synthesis of rectangular cross-section AlN nanofibers by chemical vapor deposition. Chem. Phys. Lett. 416, 171 2005

    Article  CAS  Google Scholar 

  30. R. Zhong, H. Cong P. Hou: Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes. Carbon 41, 848 2002

    Article  Google Scholar 

  31. A.K. Dhingra S.G. Fishman: Interfaces in Metal-Matrix Composites Metallurgical Society Inc. New Orleans, LA 1986 211

    Google Scholar 

  32. M.R. Piggott: Load-Bearing Fibre Composites Pergamon Press Inc. New York 1980

    Google Scholar 

  33. E.W. Wong, P.E. Sheehan C.M. Lieber: Nanobeam mechanics: Elasticity, s trength, and toughness of nanorods and nanotubes. Science 277, 1971 1997

    Article  CAS  Google Scholar 

  34. R. Mitra, W.A. Chiou, M.E. Fine J.R. Weertman: Interfaces in as-extruded XD Al/TiC and Al/TiB2 metal matrix. J. Mater. Res. 8, 2380 1993

    Article  CAS  Google Scholar 

  35. V.C. Nardone K.M. Prewo: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Mater. 20, 43 1986

    Article  CAS  Google Scholar 

  36. H.J. Ryu, S.I. Cha S.H. Hong: Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites. J. Mater. Res. 18, 2851 2003

    Article  CAS  Google Scholar 

  37. X.K. Sun, H.T. Cong, M. Sun M.C. Yang: Preparation and mechanical properties of highly densified nanocrystalline Al. Metall Mater. Trans. A 31, 1017 2000

    Article  Google Scholar 

  38. Y.L. Shen, A. Needleman S. Suresh: Coefficient of thermal expansion of metal-matrix composites for electronic packaging. Metall. Mater. Trans. A 25, 839 1994

    Article  Google Scholar 

  39. S. Lemieux, S. Elomari, J.A. Nemes M.D. Skibo: Thermal expansion of isotropic Duralcan metal-matrix composites. J. Mater. Sci. 33, 4381 1998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by National Natural Science Foundation of China (Grant No. 50371083). The authors thank Prof. H.M. Cheng, Prof. N.L. Shi, Prof. E. Tomas, Dr. Q.S. Zhu, Dr. Z.Q. Yang, and Mr. Y.L. Wang for their kind help in discussion, characterization and measurements of mechanical and thermal expansion properties of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Cong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y.B., Liu, Y.Q., Sun, C.H. et al. AlN nanowires for Al-based composites with high strength and low thermal expansion. Journal of Materials Research 22, 2711–2718 (2007). https://doi.org/10.1557/JMR.2007.0368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2007.0368

Navigation