Skip to main content
Log in

Experimental verification of the strain-gradient plasticity model for indentation

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The indentation size effect of pure iron samples with various pre-plastic tensile strains has been experimentally investigated and analyzed. With the increase in the strain, the indentation size effect of iron samples becomes weak, accompanied by the multiplication of the statistically stored dislocations. All of the hardness (H) versus indentation depth (h) curves fit the strain-gradient plasticity model for indentation of Nix and Gao well. Two fitting parameters, the hardness in the limit of infinite depth (H0) and the characteristic length (h*), were obtained for each curve. The hardness (H0) of iron samples can also be estimated as the microhardness (H) at a very large depth, h ≅ 10h*. Both the fitted H0 and the measured H0′ increase linearly with the tensile yield stress σy of iron samples, indicating a dependence of H0 on the statistically stored dislocation density through σy. Furthermore, 1/√h* shows a linear increase with the tensile yield stress σy, which also agrees qualitatively with the general prediction of the Nix and Gao theory. Therefore, our experiments and analysis demonstrate that the strain-gradient plasticity model for indentation of Nix and Gao can interpret the indentation size effect with satisfied precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. L.M. Qian, X.D. Xiao, Q.P. Sun and T.X. Yu: Anomalous relationship between hardness and wear properties of a superelastic nickel–titanium alloy. Appl. Phys. Lett. 84, 1076 (2004).

    Article  CAS  Google Scholar 

  3. L.M. Qian, F. Tian and X.D. Xiao: Tribological properties of self-assembled monolayers and their substrates under various humid environments. Tribol. Lett. 15, 169 (2003).

    Article  CAS  Google Scholar 

  4. S.M. Spearing: Materials issues in microelectromechanical systems (MEMS). Acta Mater. 48, 179 (2000).

    Article  CAS  Google Scholar 

  5. L.M. Qian, G. Luango and E. Perez: Thermally activated lubrication with alkanes: The effect of chain length. Europhys. Lett. 61, 268 (2003).

    Article  CAS  Google Scholar 

  6. X.D. Xiao and L.M. Qian: Investigation of humidity-dependent capillary force. Langmuir 16, 8153 (2000).

    Article  CAS  Google Scholar 

  7. L.M. Qian, M. Li, Z.R. Zhou, H. Yang and X.Y. Shi: Comparison of nano-indentation hardness and micro hardness. Surf. Coat. Technol. 195, 264 (2005).

    Article  CAS  Google Scholar 

  8. L.E. Samuels: Microindentation in Metals, ASTM STP 889 (Philadelphia, PA, 1986), pp. 5–25.

    Google Scholar 

  9. P.M. Sargent: Use of the Indentation Size Effect on Microhardness for Materials Characterization, ASTM STP 889 (Philadelphia, PA, 1986), pp. 160–174.

    Google Scholar 

  10. H. Li, A. Ghosh, Y.H. Han and R.C. Bradt: The frictional component of the indentation size effect in low load microhardness testing. J. Mater. Res. 8, 1028 (1993).

    Article  CAS  Google Scholar 

  11. Q. Ma and D.R. Clarke: Size-dependent hardness in silver single crystals. J. Mater. Res. 10, 853 (1995).

    Article  CAS  Google Scholar 

  12. F. Froehlich, P. Grau and W. Wrellmann: Performance and analysis of recording microhardness tests. Phys. Status Solidi 42, 79 (1977).

    Article  CAS  Google Scholar 

  13. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  14. M. Atkinson: Origin of the indentation size effect in indentation of metals. Int. J. Mech. Sci. 33, 843 (1991).

    Article  Google Scholar 

  15. N.A. Stelmashenko, M.G. Walls, L.M. Brown and Y.V. Milman: Microindentation on W and Mo oriented single crystals: An STM study. Acta. Metall. Mater. 41, 2855 (1993).

    Article  CAS  Google Scholar 

  16. W.J. Poole, M.F. Ashby and N.A. Fleck: Microhardness of annealed and work-hardened copper polycrystals. Scr. Metall. Mater. 34, 559 (1996).

    Article  CAS  Google Scholar 

  17. A.A. Elmustafa and D.S. Stone: Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys. J. Mech. Phys. Solids 51, 357 (2003).

    Article  CAS  Google Scholar 

  18. W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeyer and M.I. Baskes: Interpretations of indentation size effects. J. Appl. Mech.-Trans. ASME 69, 433 (2002).

    Article  CAS  Google Scholar 

  19. N.I. Tymiak, D.E. Kramer, D.F. Bahr, T.J. Wyrobek and W.W. Gerberich: Plastic strain and strain gradients at very small indentation depths. Acta Mater. 49, 1023 (2001).

    Article  Google Scholar 

  20. H. Gao, Y. Huang and W.D. Nix: Modeling plasticity at the micron scale. Naturwissenschaften 86, 507 (1999).

    Article  CAS  Google Scholar 

  21. J.D. Swadener, A. Misra, R.G. Hoagland and M. Nastasi: A mechanistic description of combined hardening and size effects. Scr. Mater. 47, 343 (2002).

    Article  CAS  Google Scholar 

  22. G. Feng and W.D. Nix: Indentation size effect in MgO. Scr. Mater. 51, 599 (2004).

    Article  CAS  Google Scholar 

  23. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford, England, 1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongrong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, L., Yang, H., Zhu, M. et al. Experimental verification of the strain-gradient plasticity model for indentation. Journal of Materials Research 20, 3150–3156 (2005). https://doi.org/10.1557/JMR.2005.0395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0395

Navigation