Skip to main content
Log in

Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Among many Sn-based intermetallics, Cu6Sn5 (η and η′) is ubiquitous in modern solder interconnects. Using the published structural models of η and η′ and also related structures, the total energies and equilibrium cohesive properties are calculated from first-principles employing electronic density-functional theory, ultrasoft pseudopotentials, and both the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange-correlation energy. The accuracy of our calculations is assessed through comparisons between theoretical results and experimental measurements for lattice parameters, elastic properties, and formation and transformation energies. The ambient-temperature experimental lattice constants of η and η′ are found to lie between the LDA and GGA level calculated zero-temperature lattice constants. The Wyckoff positions in the structural models of η and η′ agree very well with the ab initio results. The calculated formation energy of η′ lies between −3.2 and −4.0 kJ/mol, which is more positive by about 3 to 4 kJ/mol compared to reported experimental data obtained by solution calorimetry. Our systematic differential scanning calorimetry (DSC) experiments show that the η′ → η transformation enthalpy is 438 ± 18 J/mol, which is about 66% higher than the literature value. In view of our DSC results on heating and cooling, the nature of η′ → η and η → η′ is discussed. Our experimental bulk modulus of η and η′, and the heat of η′ → η transformation agree very well with the ab initio total energy calculations at the GGA level. Based on these results, we conclude that other isotropic elastic moduli (Young’s modulus, shear, and Poissons ratio) of η and η′ phases measured by pulse-echo technique are representative of their actual properties. The scatter in experimental elastic constants in the literature may be attributed to various factors, such as the measurement technique (pulse-echo versus nanoindentation), type of specimen (bulk, Cu6Sn5-layer in diffusion couple, thin-film), and anisotropy effects (particularly in Cu6Sn5-layer in diffusion couples).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Tu and K. Zeng: Tin-Lead (SnPb) solder reaction in flip chop technology. Mater. Sci. Eng. R34 (2001).

    Google Scholar 

  2. A. Gangulee, G.C. Das and M.B. Bever: An x-ray diffraction and calorimetric investigation of the compound Cu6Sn5. Metall. Trans. 4, 2063 (1973).

    Article  CAS  Google Scholar 

  3. J.H. Shim, C.S. Oh, B.J. Lee and D.N. Lee: Thermodynamic assessment of the Cu-Sn system. Z. Metallkde. 87, 205 (1996).

    CAS  Google Scholar 

  4. K.W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello and C.A. Handwerker: Experimental and Thermodynamic assessment of the Sn-Ag-Cu system. J. Electron. Mater. 29, 1122 (2000).

    Article  CAS  Google Scholar 

  5. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma and K. Ishida: Experimental investigation and thermodynamic calculation of the phase equilibria in the Cu-Sn and Cu-Sn-Mn systems. Metall. Mater. Trans A 35A, 1641 (2004).

    Article  CAS  Google Scholar 

  6. L.D. Kepler, J.T. Vaughey and M.M. Thackeray: LixCu6Sn5 (0 < × < 13): An intermediate insertion electrode for rechargeable lithium batteries. Electrochem. Solid-State Lett. 2, 307 (1999).

    Article  CAS  Google Scholar 

  7. D. Larcher, L.Y. Beaulieu, D.D. MacNeil and J.R. Dahn: In situ x-ray study of the electrochemical reaction of Li with ?’–Cu6Sn5. J. Electrochem. Soc. 147, 1658 (2000).

    Article  CAS  Google Scholar 

  8. M.M. Thackeray, J.T. Vaughey and L.M.L. Fransson: Recent developments in anode materials for lithium batteries. J. Metals 54(3), 20 (2002).

    CAS  Google Scholar 

  9. K. Puttlitz: Preparation, structure, and fracture modes of Pb–Sn and Pb–In terminated flip-chips attached to gold capped microsockets. IEEE Trans CHMT 13, 647 (1990).

    Google Scholar 

  10. R.E. Pratt, E.I. Stromswold and D.J. Quesnel: Mode-I fracture-toughness testing of eutectic Sn-Pb solder joints. J. Electron. Mater. 23, 375 (1994).

    Article  CAS  Google Scholar 

  11. D. Frear and P.T. Vianco: Intermetallic growth and mechanical-behavior of low and high-melting temperature solder alloys. Metall. Trans. A 25A, 1509 (1994).

    Article  CAS  Google Scholar 

  12. D. Yao and J.K. Shang: Effect of aging on fatigue-crack growth at Sn-Pb/Cu interfaces. Metall. Trans. A 26A, 2677 (1995).

    Article  CAS  Google Scholar 

  13. B. Subrahmanyan: Elastic-moduli of some complicated binary alloy systems. Trans. Jpn. Inst. Met. 130, 93 (1972).

    Article  Google Scholar 

  14. R. Cabarat, L. Guillet and R. LeRoux: The elastic properties of metallic alloys. J. Inst. Met. 75, 391 (1975).

    Google Scholar 

  15. R.J. Fields, S.R. Low III, G.K. Lucey Jr.: In The Metal Science of Joining, edited by M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman, (TMS, Warrendale, PA, 1992), pp. 165–173.

  16. G. Ghosh: Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J. Mater. Res. 19, 1439 (2004).

    Article  CAS  Google Scholar 

  17. J.P. Lucas, H. Rhee, F. Guo and K.N. Subramanian: Mechanical properties of intermetallic compounds associated with Pb-free solder joints using nanoindentation. J. Electron. Mater. 32, 1375 (2003).

    Article  CAS  Google Scholar 

  18. R.R. Chromik, R.P. Vinci, S.L. Allen and M.R. Notis: Nanoindentation measurements on Cu-Sn and Ag-Sn intermetallics formed in Pb-free solder joints. J. Mater. Res. 18, 2251 (2003).

    Article  CAS  Google Scholar 

  19. X. Deng, M. Koopman, N. Chawla and K.K. Chawla: Young’s modulus of (Cu, Ag) Sn intermetallics measured by nanoindentation. Mater. Sci. Eng. A364, 240 (2004).

    Article  CAS  Google Scholar 

  20. L.M. Ostrovskaya, V.N. Rodin and A.I. Kuznetsov: Elastic properties of intermetallic compounds produced by vacuum deposition. Sov. J. Non-Ferrous Met. 26(3), 90 (1985).

    Google Scholar 

  21. A. Westgren and G. Phragmen: X-ray analysis of copper-tin alloys. Z. Anorg. Chem. 175, 80 (1928).

    Article  CAS  Google Scholar 

  22. D. Rose: New data for stistaite and antimony-bearing ?-Cu6Sn5 from Rio Tammana, Colombia. Neues Jb. Miner. Monat. 3, 117 (1981).

    Google Scholar 

  23. A.K. Larsson, L. Stenberg and S. Lidin: Crystal structure modulation in ?–Cu5Sn4. Z. Kristallogr. 210, 832 (1995).

    CAS  Google Scholar 

  24. J.D. Bernal: The complex structure of the copper-tin intermetallic compound. Nature 122, 54 (1928).

    Article  CAS  Google Scholar 

  25. O. Carlsson and G. Hägg: On the knowledge of crystal structures of some copper-tin phases. Z. Kristallogr. 83, 308 (1932).

    CAS  Google Scholar 

  26. A.K. Larsson, L. Stenberg and S. Lidin: The superstructure of domain-twinned ?’–Cu6Sn5. Acta Crystallogr. B50, 636 (1994).

    Article  CAS  Google Scholar 

  27. B.G. Hyde and S. Andersson: Inorganic Crystal Structures (Wiley and Sons, New York, 1989).

    Google Scholar 

  28. S. Lidin and A.K. Larsson: A survey of superstructures in intermetallic NiAs-Ni2In-type phases. J. Solid State Chem. 118, 313 (1995).

    Article  CAS  Google Scholar 

  29. S. Lidin: Superstructure ordering of intermetallics: B8 structures in the pseudo-cubic regime. Acta Crystallogr. B54, 97 (1998).

    Article  CAS  Google Scholar 

  30. G. Kresse and J. Furthmuller: Efficient iterative schemes of ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  31. G. Kresse and J. Furthmuller: Efficiency of ab-initio total energy calculations for metals and semi-conductors using a plane-wave basis set. Comp. Mater Sci. 6(1996).

  32. D. Vanderbilt: Soft self-consistent pseudo potential in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  CAS  Google Scholar 

  33. D.M. Ceperley and B.J. Alder: Ground-state of the electron-gas by a stochastic method. Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  34. J.P. Perdew and A. Zunger: Self-interaction correction to density-functional approximation for many-electron systems. Phys. Rev. B 23, 5048 (1981).

    Article  CAS  Google Scholar 

  35. J.P. Perdew and Y. Wang: Accuarte and simple analytic representation of the electron-gas correlation-energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  36. H.J. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188 (1976).

    Article  Google Scholar 

  37. M. Methfessel and A.T. Paxton: High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989).

    Article  CAS  Google Scholar 

  38. P. Vinet, J.H. Rose, J. Ferrante and J.R. Smith: Universal feature of the equation of state solids. J. Phys: Condens Matter 1, 1941 (1989).

    CAS  Google Scholar 

  39. F.D. Murnaghan: The compressibility of media under extreme pressures. Prop. Acad. Sci. USA 50, 244 (1944).

    Article  Google Scholar 

  40. F. Birch: Elasticity and constitution of the earth. J. Geophys. Res. 57, 227 (1952).

    Article  CAS  Google Scholar 

  41. R.E. Green Jr.: In Nondestructive Testing Handbook: Ultrasonic Testing, Vol. 7, edited by P. McIntire (American Society for Non-destructive Testing, 1992), pp. 1–22.

  42. E.H. Henneke: In Nondestructive Testing Handbook: Ultrasonic Testing, Vol. 7, edited by P. McIntire (American Society for Non-destructive Testing, 1991), pp. 33–64.

  43. M. Levy, H.E. Baas and R.R. Stern: Handbook of Elastic Properties of Solids, Liquids and Gases (Academic Press, San Diego, CA, 2001).

    Google Scholar 

  44. L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagram (Academic Press, Inc., New York, 1970).

    Google Scholar 

  45. N.E. Christensen and M. Methfessel: Density-functional calculations of the structural properties of tin under pressure. Phys. Rev. B 48, 5797–5807(1993).

    Article  CAS  Google Scholar 

  46. A. Aguado: First-principles study of elastic properties and pressureinduced phase transitions of Sn: LDA vs GGA results. Phys. Rev. B 67, 212104 (2003).

    Article  CAS  Google Scholar 

  47. M.E. Straumanis and L.S. Yu: Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and Cu-In alpha phase. Acta Crystall. A 25A, 676 (1969).

    Article  Google Scholar 

  48. M. Kamtola and E. Tokola: X-ray studies on the thermal expansion of copper-nickel alloys. Physica 223A, 1 (1967).

    Google Scholar 

  49. W.C. Gaffney and J. Overton Jr.: Temperature variation of the elastic constants of cubic elements. I. Copper. Phys. Rev. 98, 969 (1955).

    Article  Google Scholar 

  50. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed. (The MIT Press, Cambridge, MA, 2001), p. 179.

    Google Scholar 

  51. D.J. Steinberg: Some observations regarding the pressure dependence of the bulk modulus. J. Phys. Chem. Solids 43, 1173 (1982).

    Article  CAS  Google Scholar 

  52. J. Thewlis and A.R. Davey: Thermal expansion of grey tin. Nature 174, 1011 (1954).

    Article  CAS  Google Scholar 

  53. D.L. Price and J.M. Rowe: The crystal dynamics of grey (a) tin at 90°K. Solid State Commun. 7, 1433 (1969).

    Article  CAS  Google Scholar 

  54. C.J. Buchenauer, M. Cardona and F.H. Pollak: Raman scattering in grey tin. Phys. Rev. B 3, 1243 (1971).

    Article  Google Scholar 

  55. J.A. Lee and G.V. Raynor: The lattice spacing of binary tin-rich alloys. Proc. Phys. Soc., London 67B, 737 (1954).

    Article  CAS  Google Scholar 

  56. M. Wolcyrz, R. Kubiak and S. Maciejewski: X-ray investigation of thermal expansion and atomic thermal vibrations of tin, indium, and their alloys. Phys. Status Solidi 107B, 245 (1981).

    Article  Google Scholar 

  57. J.A. Rayne and B.S. Chandrasekhar: Elastic constants of ß tin from 4.2° K to 300° K. Phys. Rev. 120, 1658 (1960).

    Article  CAS  Google Scholar 

  58. B.H. Cheong and K.J. Chang: First-principles study of the structural properties of Sn under pressure. Phys. Rev. B 44, 4103 (1991).

    Article  CAS  Google Scholar 

  59. F. Jona and P.M. Marcus: Structural properties of Cu. Phys. Rev. B 63, 094113 (2001).

    Article  CAS  Google Scholar 

  60. L.G. Wang and M. Šob: Structural stability of higher-energy phases and its relation to the atomic configuration of extended defects: The example of Cu. Phys. Rev. B 60, 844 (1999).

    Article  CAS  Google Scholar 

  61. P. Pavone, S. Baroni and S. de Gironcoli: a ß transition in tin: A theoretical study of density functional perturbation theory. Phys. Rev. B 57, 10421 (1998).

    Article  CAS  Google Scholar 

  62. A. Dinsdale: SGTE data for pure elements. Calphad 15, 317 (1991).

    Article  CAS  Google Scholar 

  63. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi and B. Sundman: Thermo-calc and DICTRA, computational tools for materials science. Calphad 26, 273 (2002).

    Article  CAS  Google Scholar 

  64. Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.Q. Chen and Z.K. Liu: Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad 28, 79 (2004).

    Article  CAS  Google Scholar 

  65. P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  66. C. Wolverton and V. Ozolins: Entropically favored ordering: The metallurgy of Al2Cu revisited. Phys. Rev. Lett. 86, 5518 (2001).

    Article  CAS  Google Scholar 

  67. T. Ishihara: On the equilibrium diagram of the copper-tin system. J. Inst. Metals 31, 315 (1924).

    Google Scholar 

  68. M. Hamasumi: The equilibrium diagram of copper-tin alloys. Kinzoku no kenkyo 10, 137 (1933).

    Google Scholar 

  69. J.L. Haughton: The constitution of the alloys of copper with tin: Parts III and IV. J. Inst. Metals 25, 309 (1921).

    Google Scholar 

  70. G.V. Raynor: In Annoted Equilibrium Diagram Series, No. 2 (The Institute of Metals, London, U.K., 1944).

    Google Scholar 

  71. N. Saunders and A.P. Miodownik: The Cu–Sn (copper–tin) system. Bull. Alloy Phase Diagrams 11, 278 (1990).

    Article  CAS  Google Scholar 

  72. L.D. Landau and E.M. Lifschitz: Statistical Physics (Pergamon Press, Oxford, U.K., 1976).

    Google Scholar 

  73. Y.A. Izyumov and V.N. Syromyatnikov: Phase Transitions and Crystal Symmetry (Kluwer, Dordrecht, The Netherlands, 1990).

    Book  Google Scholar 

  74. http//www.cryst.ehu.es.

  75. K. Prakash and T. Sritharan: Interface reaction between copper and molten tin-lead solders. Acta Mater. 49, 2481 (2001).

    Article  CAS  Google Scholar 

  76. K. Prakash and T. Sritharan: Textured growth of Cu/Sn intermetallic compounds. J. Electronic Mater. 31, 1250 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, G., Asta, M. Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results. Journal of Materials Research 20, 3102–3117 (2005). https://doi.org/10.1557/JMR.2005.0371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0371

Navigation