Skip to main content
Log in

In situ transmission electron microscopy studies on structural dynamics of transition metal nanoclusters

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural stability of transition metal nanoclusters has been scrutinized with in situ transmission electron microscopy as a function of temperature. In particular iron, cobalt, niobium, and molybdenum clusters with diameters around 5 nm have been investigated. During exposure to air, a thin oxide shell with a thickness of 2 nm is formed around the iron and cobalt clusters, which is thermally unstable under moderate high vacuum annealing above 200 °C. Interestingly, niobium clusters oxidize only internally at higher temperatures without the formation of an oxide shell. They are unaffected under electron beam irradiation, whereas iron and cobalt undergo severe structural changes. Further, no cluster coalescence of niobium takes place, even during annealing up to 800 °C, whereas iron and cobalt clusters coalesce after decomposition of the oxide, as long as the clusters are in close contact. In contrast to niobium, molybdenum clusters do not oxidize upon annealing; they are stable under electron beam irradiation and coalesce at temperatures higher than 800 °C. In all cases, the coalescence process indicates a strong influence of the local environment of the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanomaterials: Synthesis, Properties and Applications, edited by A.S. Edelstein and R.C. Cammarata (Institute of Physics Publishing, Bristol, U.K., 1998).

    Google Scholar 

  2. W. de Heer: The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 65, 611 (1993).

    Google Scholar 

  3. P. Melinon, V. Paillard, V. Dupuis, A. Perez, P. Jensen, A. Hoareau, J.P. Perez, J. Tuaillon, M. Broyer, J.L. Vialle, M. Pellarin, B. Baguenard, and J. Lermé: From free clusters to clusterassembled materials. Int. J. Mod. Phys. B. 9, 339 (1995).

    CAS  Google Scholar 

  4. W. Eberhardt: Clusters as new materials. Surf. Sci. 500, 242 (2002).

    CAS  Google Scholar 

  5. Nanostructure Science and Technology: A Worldwide Study, edited by R.W. Siegel, E. Hu, and M.C. Roco (National Science and Technology Council, Washington, D.C., 1999).

    Google Scholar 

  6. R. Palmer, S. Pratontep, and H. Boyen: Nanostructured surfaces from size-selected clusters. Nat. Mater. 2, 443 (2003).

    CAS  Google Scholar 

  7. H. Haberland, M. Karrais, M. Mall, and Y. Thurner: Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A 10, 3266 (1992).

    CAS  Google Scholar 

  8. H. Haberland, M. Moseler, Y. Qiang, O. Rattunde, T. Reiners, and Y. Thurner: Energetic cluster impact (ECI): A new method for thin-film formation. Surf. Rev. Lett. 3, 887 (1996).

    CAS  Google Scholar 

  9. P. Jensen: Growth of nanostructures by cluster deposition: Experiments and simple models. Rev. Mod. Phys. 71, 1695 (1999).

    CAS  Google Scholar 

  10. C. Binns: Nanoclusters deposited on surfaces. Surf. Sci. Rep. 44, 1 (2001).

    CAS  Google Scholar 

  11. M. Bowker: The going rate for catalysts. Nat. Mater. 1, 205 (2002).

    CAS  Google Scholar 

  12. R.A. Bennett, D.M. Tarr, and P.A. Mulheran: Ripening processes in supported and pinned nanoclusters-experiment, simulation and theory. J. Phys. Condens. Matter 15, S3139 (2003).

    CAS  Google Scholar 

  13. N. Combe, P. Jensen, and A. Pimpinelli: Changing shapes in the nanoworld. Phys. Rev. Lett. 85, 110 (2000).

    CAS  Google Scholar 

  14. L.D. Marks: Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603 (1994), and references therein.

    CAS  Google Scholar 

  15. L.D. Marks and D.J. Smith: Direct surface imaging in small metal particles. Nature 303, 316 (1983).

    CAS  Google Scholar 

  16. J-O. Bovin and J-O. Malm: High resolution electron microscopy structure images of metal particles. Acta Chem. Scand. A. 45, 791 (1991).

    CAS  Google Scholar 

  17. P-A. Buffat, M. Flu¨eli, R. Spycher, P. Stadelmann, and J-P. Borel: Crystallographic structure of small gold particles studied by highresolution electron microscopy. Faraday Discuss. 92, 173 (1991).

    CAS  Google Scholar 

  18. Y.D. Yao, Y.Y. Chen, S.F. Lee, W.C. Chang, and H.L. Hu: Magnetic and thermal studies of nano-size Co and Fe particles. J. Magn. Magn. Mater. 239, 249 (2002).

    CAS  Google Scholar 

  19. Y.D. Yao, Y.Y. Chen, C.M. Hsu, H.M. Lin, C.Y. Tung, M.F. Tai, D.H. Wang, K.T. Wu, and C.T. Suo: Thermal and magnetic studies of nanocrystalline Ni. Nanostruct. Mater. 6, 933 (1995).

    Google Scholar 

  20. T. Vystavel, G. Palasantzas, S.A. Koch, and J.T.M.D. Hosson: Niobium nanoclusters studied with in situ transmission electron microscopy. Appl. Phys. Lett. 83, 3909 (2003).

    CAS  Google Scholar 

  21. T. Vystavel, G. Palasantzas, S.A. Koch, and J.T.M. De Hosson: Nanosized iron clusters investigated with in situ transmission electron microscopy. Appl. Phys. Lett. 82, 197 (2003).

    CAS  Google Scholar 

  22. C. Binns, S.H. Baker, M.J. Maher, S. Louch, S.C. Thornton, K.W. Edmonds, S.S. Dhesi, and N.B. Brookes: Magnetism in Fe nanoclusters—From isolated particles to nanostructured materials. Phys. Status Solidi 189, 339 (2002).

    CAS  Google Scholar 

  23. F. Bødker, S. Mørup, and S. Linderoth: Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282 (1994).

    Google Scholar 

  24. S. Gangopadhyay, G.C. Hadjipanayis, S.I. Shah, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, and A. Kostikas: Effect of oxide layer on the hysteresis behavior of fine Fe particles. J. Appl. Phys. 70, 5888 (1991).

    CAS  Google Scholar 

  25. S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, and A. Kostikas: Magnetic properties of ultrafine iron particles. Phys. Rev. B 45, 9778 (1992).

    CAS  Google Scholar 

  26. S. Gangopadhyay, G.C. Hadjipanayis, C.M. Sorensen, and K.J. Klabunde: Exchange anisotropy in oxide passivated Co fine particles. J. Appl. Phys. 73, 6964 (1993).

    CAS  Google Scholar 

  27. M. Holdenried, B. Hackenbroich, and H. Micklitz: Systematic studies of tunneling magnetoresistance in granular films made from well-defined Co clusters. J. Magn. Magn. Mater. 231, L13 (2001).

    CAS  Google Scholar 

  28. U. Wiedwald, M. Spasova, E.L. Salabas, M. Ulmeanu, M. Farle, Z. Frait, A. Fraile Rodriguez, D. Arvanitis, N.S. Sobal, M. Hilgendorff, and M. Giersig: Ratio of orbital-to-spin magnetic moment in Co core-shell nanoparticles. Phys. Rev. B 68, 064424 (2003).

    Google Scholar 

  29. M.D. Upward, B.N. Cotier, P. Moriarty, P.H. Beton, S.H. Baker, C. Binns, and K. Edmonds: Deposition of Fe clusters on Si surfaces. J. Vac. Sci. Technol. B 18, 2646 (2000).

    CAS  Google Scholar 

  30. V. Dupuis, J.P. Perez, J. Tuaillon, V. Paillard, P. Melinon, A. Perez, B. Barbara, L. Thomas, S. Fayeulle, and J.M. Gay: Magnetic properties of nanostructured thin films of transition metal obtained by low energy cluster beam deposition. J. Appl. Phys. 76, 6676 (1994).

    CAS  Google Scholar 

  31. C.G. Zimmermann, M. Yeadon, K. Nordlund, J.M. Gibson, and R.S. Averback: Burrowing of Co nanoparticles on clean Cu and Ag surfaces. Phys. Rev. Lett. 83, 1163 (1999).

    CAS  Google Scholar 

  32. M.J.S. Spencer, A. Hung, I.K. Snook, and I. Yarovsky: Densityfunctional theory study of the relaxation and energy of iron surfaces. Surf. Sci. 513, 389 (2002).

    CAS  Google Scholar 

  33. L.J. Lewis, P. Jensen, and J-L. Barrat: Melting, freezing, and coalescence of gold nanoclusters. Phys. Rev. B. 56, 2248 (1997).

    CAS  Google Scholar 

  34. M. Hansen: Constitution of Binary Alloys (McGraw-Hill, New York, 1958).

    Google Scholar 

  35. O. Kitakami, H. Sato, Y. Shimada, F. Sato, and M. Tanaka: Size effect on the crystal phase of cobalt fine particles. Phys. Rev. B 56, 13849 (1997).

    CAS  Google Scholar 

  36. H. Sato, O. Kitakami, T. Sakurai, Y. Shimada, Y. Otani, and K. Fukamichi: Structure and magnetism of hcp-Co fine particles. J. Appl. Phys. 81, 1858 (1997).

    CAS  Google Scholar 

  37. M. Petrucci, C.W. Pitt, S.R. Reynolds, H.J. Milledge, M.J. Mendelssohn, C. Dineen, and W.G. Freeman: Growth of thin-film niobium and niobium oxide layers by molecular-beam epitaxy. J. Appl. Phys. 63, 900 (1988).

    CAS  Google Scholar 

  38. H-J. Freund: Clusters and islands on oxides: From catalysis via electronics and magnetism to optics. Surf. Sci. 500, 271 (2002).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Th. M. De Hosson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vystavel, T., Koch, S.A., Palasantzas, G. et al. In situ transmission electron microscopy studies on structural dynamics of transition metal nanoclusters. Journal of Materials Research 20, 1785–1791 (2005). https://doi.org/10.1557/JMR.2005.0222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0222

Navigation