Skip to main content
Log in

Modeling conical indentation in homogeneous materials and in hard films on soft substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dimensional analysis and finite element modeling were conducted to examine conical indentation in homogeneous materials and in hard films on soft substrates. In this paper, the solid materials modeled follow the incremental theory of plasticity with a von-Mises yield surface. The validity of the Oliver–Pharr method was examined. It was found that, for hard films on soft substrates, the Oliver–Pharr method is applicable only when the indentation depth is less than 10% of the film thickness. A linear relationship between the ratio of hardness to reduced modulus and the ratio of reversible work to total work was observed for conical indentation in homogeneous materials and in hard films on soft substrates. This relationship can be used to analyze instrumented indentation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bückle: Use of hardness test to determine other material properties, in The Science of Hardness Testing and its Research Applications, edited by J.H. Westbrook and H. Conrad (American Society of Metals, Metals Park, OH, 1973), p. 453–487.

    Google Scholar 

  2. Z.H. Xu and D. Rowcliffe: Finite element analysis of substrate effects on indentation behavior of thin films, Thin Solid Films 447–448, 399 (2004).

    Article  Google Scholar 

  3. B. Jonsson and S. Hogmark: Hardness measurement of thin films, Thin Solid Films 114, 257 (1984).

    Article  Google Scholar 

  4. P.J. Burnett and D.S. Rickerby: Assessment of coating hardness, Surf. Eng. 3, 69 (1987).

    Article  CAS  Google Scholar 

  5. A.M. Korsunsky, M.R. McGurk, S.J. Bull and T.F. Page: On the hardness of coated systems, Surf. Coat. Technol. 99, 171 (1998).

    Article  CAS  Google Scholar 

  6. R.B. King: Elastic analysis of some punch problems for a layered medium, Int. J. Solids Struct. 23, 1657 (1987).

    Article  Google Scholar 

  7. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth sensing indentation instruments, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  8. A.K. Bhattacharya and W.D. Nix: Analysis of elastic and plastic deformation associated with indentation testing of thin films on substrates, Int. J. Solids Struct. 24, 1287 (1988).

    Article  Google Scholar 

  9. H. Gao, C. Chu and J. Lee: Elastic contact versus indentation modeling of multi-layered materials, Int. J. Solids Struct. 29, 2471 (1992).

    Article  Google Scholar 

  10. J. Mencik, D. Munz, E. Quandt, E.R. Weppelmann and M.V. Swain: Determination of elastic modulus of thin layers using nanoindentation, J. Mater. Res. 12, 2475 (1997).

    Article  CAS  Google Scholar 

  11. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  12. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  13. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  14. A. Bolshakov and G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  15. T.-Y. Cheng and M.-C. Cheng: Effect of ‘sinking in’ and ‘piling up’ on estimating the contact area under load in indentation, Philos. Mag. Lett. 78, 115 (1998).

    Article  CAS  Google Scholar 

  16. Y.Y. Lim, M.M. Chaudhri and Y. Enomota: Accurate determination of the mechanical properties of thin aluminum films deposited on sapphire flats using nanoindentations, J. Mater. Res. 14, 2314 (1999).

    Article  CAS  Google Scholar 

  17. T.Y. Tsui and G.M. Pharr: Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates, J. Mater. Res. 14, 292 (1999).

    Article  CAS  Google Scholar 

  18. K. Tunvisut, O’N.P. Dowd and E.P. Busso: Use of scaling functions to determine mechanical properties of thin coatings from microindentation tests, Int. J. Solids Struct. 38, 335 (2001).

    Article  Google Scholar 

  19. T.-Y. Cheng and M.-C. Cheng: Relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  20. T.-Y. Cheng, Z.Y. Li and M.-C. Cheng: Scaling relationships for indentation measurements, Philos. Mag. 82, 1821 (2002).

    Article  CAS  Google Scholar 

  21. B.R. Lawn and V.R. Howes: Elastic recovery at hardness indentations, J. Mater. Sci. 16, 2745 (1981).

    Article  CAS  Google Scholar 

  22. M. Sakai: Energy principle of the indentation-induced inelastic surface deformation and hardness of brittle materials, Acta Metall. Mater. 41, 1751 (1993).

    Article  CAS  Google Scholar 

  23. J. Menick and M.V. Swain: Micro-indentation tests with pointed indenters, Mater. Forum 18, 277 (1994).

    Google Scholar 

  24. A.E. Giannakopoulos and S. Suresh: Determination of elastoplastic properties by instrumented sharp indentation, Scripta Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  25. M. Dao, N. Chollacoop, Van K.J. Vliet, T.A. Venkatesh and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  26. J. Malzbender and de G. With: Energy dissipation, fracture toughness and the indentation load-displacement curves of coated materials, Surf. Coat. Technol. 135, 60 (2000).

    Article  CAS  Google Scholar 

  27. Z.H. Xu and D. Rowcliffe: Method to determine the plastic properties of bulk materials by nanoindentation, Philos. Mag. A 82, 1893 (2002).

    Article  CAS  Google Scholar 

  28. W. Ni, T.-Y. Cheng, M.-C. Cheng and D.S. Grummon: An energy-based method for analyzing instrumented spherical indentation experiments, J. Mater. Res. 19, 149 (2004).

    Article  CAS  Google Scholar 

  29. I.N. Sneddon: The relaxation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  30. N.M. Jennett, G. Aldrich-Smith and A.S. Maxwell: Validated measurement of Young’s modulus, Poisson ratio, and thickness for thin coatings by combining instrumented nanoindentation and acoustical measurements, J. Mater. Res. 19, 143 (2004).

    Article  CAS  Google Scholar 

  31. D. Schneider, P. Siemroth, T. Schulke, J. Berthold, B. Schultrich, H.H. Schneider, R. Ohr and B. Petereit: Quality control of ultra-thin and super-hard coatings by laser-acoustics, Surf. Coat. Technol. 153, 252 (2002).

    Article  CAS  Google Scholar 

  32. T. Chudoba, M. Griepentrog, A. Duck, D. Schneider and F. Richter: Young’s modulus measurements on ultra-thin coating, J. Mater. Res. 19, 301 (2004).

    Article  CAS  Google Scholar 

  33. G.I. Barenblatt: Scaling, Self-similarity, and Intermediate Asymptotics (Cambridge University Press, Cambridge, U.K., 1996).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangyang Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, W., Cheng, YT. Modeling conical indentation in homogeneous materials and in hard films on soft substrates. Journal of Materials Research 20, 521–528 (2005). https://doi.org/10.1557/JMR.2005.0071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0071

Navigation