Skip to main content
Log in

Finite element modeling of the indentation behavior of two-dimensional materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The finite element method is used to investigate the indentation behavior of two-dimensional (2D) materials mounted on a substrate. The overall indentation response of the composite structure of 2D-material/substrate is highly sensitive to the elastic modulus ratio of the 2D-material to its substrate (\(\lambda \)). When \(\lambda \) is small (e.g., \(\lambda < 100\)), the overall indentation load–displacement relationship agrees with the classic indentation model (e.g., the Hertz model), whereas with a large \(\lambda \) (e.g., \(\lambda \ge 10^{3}\)), the indentation behavior of the composite structure will deviate from the manner predicted by the classic indentation model. In addition, with a small \(\lambda \), the overall indentation modulus of the composite structure is very close to that of the pure substrate (i.e., the 2D-material has a very weak contribution to the overall indentation modulus), and thus, the elastic modulus of the 2D-material cannot be effectively determined from the overall indentation modulus. The contribution of the 2D-material rapidly increases with \(\lambda \), and when \(\lambda > 10^{4}\), it is possible to accurately determine the elastic modulus of the 2D-material from the overall indentation response by the inverse analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  2. Novoselov, K.S., et al.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197–200 (2005)

    Article  Google Scholar 

  3. Eda, G., Fanchini, G., Chhowalla, M.: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270–274 (2008)

    Article  Google Scholar 

  4. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Graphene/elastomer nanocomposites. Carbon 95, 460–484 (2015)

    Article  Google Scholar 

  5. Ho, D.H., et al.: Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28(13), 2601 (2016)

    Article  Google Scholar 

  6. Wang, Q.H., et al.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  Google Scholar 

  7. Georgiou, T., et al.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8(2), 100–103 (2013)

    Article  Google Scholar 

  8. Yin, Z.Y., et al.: Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. Acs Nano 4(9), 5263–5268 (2010)

    Article  Google Scholar 

  9. Lahiri, I., Verma, V.P., Choi, W.: An all-graphene based transparent and flexible field emission device. Carbon 49(5), 1614–1619 (2011)

    Article  Google Scholar 

  10. Hou, C.Y., et al.: Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv. Mater. 26(29), 5018–5024 (2014)

    Article  Google Scholar 

  11. Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  Google Scholar 

  12. Jiang, T., Huang, R., Zhu, Y.: Interfacial sliding and buckling of monolayer graphene on a stretchable substrate. Adv. Funct. Mater. 24(3), 396–402 (2014)

    Article  Google Scholar 

  13. Chen, J., et al.: Nanomechanical properties of graphene on poly(ethylene terephthalate) substrate. Carbon 55, 144–150 (2013)

    Article  Google Scholar 

  14. Zhang, Y.P., Pan, C.X.: Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam. Relat. Mater. 24, 1–5 (2012)

    Article  Google Scholar 

  15. Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3–20 (2004)

    Article  Google Scholar 

  16. Chen, S.H., Liu, L., Wang, T.C.: Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating-substrate combinations. Surf. Coat. Technol. 191(1), 25–32 (2005)

    Article  Google Scholar 

  17. Niu, T.X., Cao, G.X., Xiong, C.Y.: Fracture behavior of graphene mounted on stretchable substrate. Carbon 109, 852–859 (2016)

    Article  Google Scholar 

  18. Wei, Y.J., et al.: Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13(1), 26–30 (2013)

    Article  Google Scholar 

  19. Bunch, J.S., et al.: Impermeable atomic membranes from graphene sheets. Nano Lett. 8(8), 2458–2462 (2008)

    Article  Google Scholar 

  20. Zhou, L.X., Xue, J.M., Wang, Y.G., Cao, G.X.: Molecular mechanics simulations of the deformation mechanism of graphene monolayer under free standing indentation. Carbon 63, 117–124 (2013)

    Article  Google Scholar 

  21. Zhou, L.X., Wang, Y.G., Cao, G.X.: van der Waals effect on the nanoindentation response of free standing monolayer graphene. Carbon 57, 357–362 (2013)

    Article  Google Scholar 

  22. Zhou, L.X., Wang, Y.G., Cao, G.X.: Boundary condition and pre-strain effects on the free standing indentation response of graphene monolayer. J. Phys. Condens. Matter 25(47), 475303 (2013)

    Article  Google Scholar 

  23. Cao, G.X.: Atomistic studies of mechanical properties of graphene. Polymers 6(9), 2404–2432 (2014)

    Article  Google Scholar 

  24. Wei, Q., Peng, X.H.: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014)

    Article  Google Scholar 

  25. Xiong, S., Cao, G.X.: Molecular dynamics simulations of mechanical properties of monolayer \(MoS_{2}\). Nanotechnology 26(18), 185705 (2015)

    Article  Google Scholar 

  26. Johnston, I.D., McCluskey, D.K., Tan, C.K.L., Tracey, M.C.: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24(3), 035017 (2014)

    Article  Google Scholar 

  27. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  28. Cao, G., Chandra, N.: Evaluation of biological cell properties using dynamic indentation measurement. Phys. Rev. E 81(2), 021924 (2010)

    Article  Google Scholar 

  29. Cao, G., Sui, J., Sun, S.: Evaluating the nucleus effect on the dynamic indentation behavior of cells. Biomech. Modeling Mechanobiol. 12(1), 55–66 (2013)

    Article  Google Scholar 

  30. Niu, T., Cao, G.: Finite size effect does not depend on the loading history in soft matter indentation. J. Phys. D Appl. Phys. 47(38), 385303 (2014)

    Article  Google Scholar 

  31. Niu, T., Cao, G.: Power-law rheology characterization of biological cell properties under AFM indentation measurement. RSC Adv. 4(55), 29291–29299 (2014)

    Article  Google Scholar 

  32. Cao, G.X., Chen, X., Xu, Z.H., Li, X.D.: Measuring mechanical properties of micro- and nano-fibers embedded in an elastic substrate: theoretical framework and experiment. Compos. Part B Eng. 41(1), 33–41 (2010)

    Article  Google Scholar 

  33. Zhao, M., et al.: Measuring elastoplastic properties of thin films on an elastic substrate using sharp indentation. Acta Mater. 55(18), 6260–6274 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Niu, T. Finite element modeling of the indentation behavior of two-dimensional materials. Acta Mech 230, 1367–1376 (2019). https://doi.org/10.1007/s00707-017-2020-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2020-3

Navigation