Skip to main content
Log in

Distinctive characteristics of solid-state reactions in mechanically alloyed Ti-Al-Si-C powder mixtures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ti–Al–Si–C powder mixtures of two different compositions, namely, 58Ti–30Al–6Si–6C (at.%) and 50Ti–15Al–20Si–15C (at.%), were mechanically alloyed to investigate the solid-state reactions during such a process. The mechanically alloyed powders were characterized as a function of milling time by x-ray diffraction (XRD), scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy (TEM). XRD results showed that solid solutions of Ti were formed for a powder mixture of 58Ti–30Al–6Si–6C in about 20 h of milling, whereas Ti5(Al,Si)3 and Ti(Al,Si)C compounds started to form in the powder mixture of 50Ti–15Al–20Si–15C within just 5 h of milling. TEM observations demonstrated that the particle sizes were of nano and submicron scale in both cases. This investigation indicated that in mechanically alloyed Ti–Al–Si–C powder mixtures, the main solid-state reactions are due to interdiffusion and mechanically induced self-propagating reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Koch: Intermetallic matrix composites prepared by mechanical alloying—A review, Mater. Sci. Eng. A 244, 39 (1998).

    Google Scholar 

  2. O.N. Senkov, M. Cavusoglu and F.H. Froes: Synthesis and characterization of a TiAl/Ti5Si3 composite with a submicrocrystalline structure, Mater. Sci. Eng. A 300, 85 (2001).

    Google Scholar 

  3. R. Bohn, G. Fanta, T. Klassen and R. Bormann: Submicron-grained multiphase TiAlSi alloys: Processing, characterization, and microstructural design, J. Mater. Res. 16, 1850 (2001).

    CAS  Google Scholar 

  4. G. Zhang, P.A. Blenkinsop and M.L.H. Wise: Phase transformations in HIPped Ti–48Al–2Mn-2Nb powder during heat-treatments, Intermetallics 4, 447 (1996).

    CAS  Google Scholar 

  5. P.I. Gouma, S.J. Davey and M.H. Loretto: Microstructure and mechanical properties of a TiAl-based powder alloy containing carbon, Mater. Sci. Eng. A 241, 151 (1998).

    Google Scholar 

  6. R. Ramaseshan, A. Kakitsuji, S.K. Seshadri, N.G. Nair, H. Mabuchi, H. Tsuda, T. Matsui and K. Morii: Microstructure and some properties of TiAl–Ti2AlC composites produced by reactive processing, Intermetallics 7, 571 (1999).

    CAS  Google Scholar 

  7. H.S. Park, S.K. Huang, C.M. Lee, Y.C. Yoo, S.W. Nam and N.J. Kim: Microstructural refinement and mechanical properties improvement of elemental powder metallurgy processed Ti-46.6AI-1.4Mn-2Mo alloy by carbon addition, Metall. Mater. Trans. A 32, 251 (2001).

    Google Scholar 

  8. S.N. Patankar, S.Q. Xiao, J.J. Lewandowski and A.H. Heuer: Mechanism of mechanical alloying of MoSi2, J. Mater. Res. 8, 1311 (1993).

    CAS  Google Scholar 

  9. E. Gaffet and N. Malhouroux-Gaffet: Nanocrystalline MoSi2 phase formation induced by mechanically activated annealing, J. Alloys Compd. 205, 27 (1994).

    CAS  Google Scholar 

  10. L. Liu, F. Padella, W. Guo and M. Magini: Solid state reactions induced by mechanical alloying in metal–silicon (metal = Mo, Nb) systems, Acta Metall. Mater. 43, 3755 (1995).

    CAS  Google Scholar 

  11. F.H. Froes, O.N. Senkov and E.G. Baburaj: Synthesis of nanocrystalline materials — An overview, Mater. Sci. Eng. A 301, 44 (2001).

    Google Scholar 

  12. P. Villars, A. Prince and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, Vol. 4, (ASM International, Materials Park, Ohio, 1995), p. 4315.

    Google Scholar 

  13. P. Villars, A. Prince and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams, Vol. 3, (ASM International, Materials Park, Ohio, 1995), p. 2905.

    Google Scholar 

  14. C. Suryanarayana: Mechanical alloying and milling, Progr. Mater. Sci. 46, 1 (2001).

    CAS  Google Scholar 

  15. L. Lü and M.O. Lai: In Mechanical Alloying (Kluwer Academic Publishers, New York, 1998), p. 88.

    Google Scholar 

  16. T. Klassen, M. Oehring and R. Bormann: The early stages of phase formation during mechanical alloying of Ti–Al, J. Mater. Res. 9, 47 (1994).

    CAS  Google Scholar 

  17. C. Suryanarayana, G.H. Chen, A. Frefer and F.H. Froes: Structural evolution of mechanical alloyed Ti–Al alloys, Mater. Sci. Eng. A 158, 93 (1992).

    Google Scholar 

  18. M. Oehring, T. Klassen and R. Bormann: Formation of metastable Ti–Al solid solutions by mechanical alloying and ball milling, J. Mater. Res. 8, 2819 (1993).

    CAS  Google Scholar 

  19. Z.Q. Guan, Pfullmann Th., M. Oehring and R. Bormann: Phase formation during ball milling and subsequent thermal decomposition of Ti–Al–Si powder blends, J. Alloys Compd. 252, 245 (1997).

    CAS  Google Scholar 

  20. K.P. Rao and J.B. Zhou: Characterization of mechanically alloyed Ti–Al–Si powder blends and their subsequent thermal stability, Mater. Sci. Eng. A 338, 282 (2002).

    Google Scholar 

  21. H.W. King: Quantitative size-factors for metallic solid solutions, J. Mater. Sci. 1, 79 (1966).

    CAS  Google Scholar 

  22. R.T. Leonard and C.C. Koch: X-ray intensity decrease from absorption effects in mechanically milled systems, Scripta Mater. 36, 41 (1997).

    CAS  Google Scholar 

  23. C.S. Barrett and T.B. Massalski: Structure of Metals (Pergaman Press, Oxford, U.K., 1980), p. 621.

    Google Scholar 

  24. Z.H. Yan, M. Oehring and R. Bormann: Metastable phase formation in mechanically alloyed and ball milled Ti–Si, J. Appl. Phys. 72, 2478 (1992).

    CAS  Google Scholar 

  25. M. Oehring, Z.H. Yan, T. Klassen and R. Bormann: Competition between stable and metastable phases during mechanical alloying and ball milling, Phys. Status. Solidi. 131, 671 (1992).

    CAS  Google Scholar 

  26. Z.G. Liu, J.T. Guo, L.L. Ye, G.S. Li and Z.Q. Hu: Formation mechanism of TiC by mechanical alloying, Appl. Phys. Lett. 65, 2666 (1994).

    CAS  Google Scholar 

  27. M.S. El-Eskandarany: Synthesis of nanocrystalline titanium carbide alloy powders by mechanical solid state reaction, Metall. Mater. Trans. A 27, 2374 (1996).

    Google Scholar 

  28. C.J. Choi: Preparation of ultrafine TiC–Ni cermet powders by mechanical alloying, J. Mater. Proc. Tech. 104, 127 (2000).

    Google Scholar 

  29. M. Krasnowski, A. Witek and T. Kulik: The FeAl–30%TiC nanocomposite produced by mechanical alloying and hot-pressing consolidation, Intemetallics 10, 371 (2002).

    CAS  Google Scholar 

  30. K. Krivoroutchko, T. Kulik, H. Matyja, V.K. Portnoy and V.I. Fadeeva: Solid state reactions in Ni–Al–Ti–C system by mechanical alloying, J. Alloys Compd. 308, 230 (2000).

    CAS  Google Scholar 

  31. L.Z. Zhou, J.T. Guo and G.J. Fan: Synthesis of NiAl–TiC nanocomposite by mechanical alloying elemental powders, Mater. Sci. Eng. A 249, 103 (1998).

    Google Scholar 

  32. M.E. Schlesinger: Thermodynamics of solid transition-metal silicides, Chem. Rev. 90, 607 (1990).

    CAS  Google Scholar 

  33. R.A. Rapp and X. Zheng: Thermodynamic consideration of grain refinement of aluminum alloys by titanium and carbon, Metall. Trans. A 22, 3071 (1991).

    Google Scholar 

  34. J. Pelleg and Y. Shor: Formation of C54 TiSi2 in a cosputtered (Ti+Si) blanket film in the presence of a TiN capping layer, Microelectron. Eng. 69, 65 (2003).

    CAS  Google Scholar 

  35. J. Joardar, S.K. Pabi and B.S. Murty: Estimation of entrapped powder temperature during mechanical alloying, Scripta Mater. 36, 1199 (2004).

    Google Scholar 

  36. B.K. Yen and T. Aizawa: Reaction synthesis of titanium silicides via self-propagating reaction kinetics, J. Am. Ceram. Soc. 81, 1953 (1998).

    CAS  Google Scholar 

  37. E. Ma, J. Pagan, G. Cranford and M. Atzmon: Evidence for self-sustained MoSi2 formation during room-temperature high-energy ball milling of elemental powders, J. Mater. Res. 8, 1836 (1993).

    CAS  Google Scholar 

  38. S.J. Camplell and W.A. Kaczmarek: Mössbauer effect studies of materials prepared by mechanochemical methods, in Mössbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 2, edited by G.J. Long and F. Grandjean (Plenum Press, New York, 1996), p. 288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J.B., Rao, K.P. Distinctive characteristics of solid-state reactions in mechanically alloyed Ti-Al-Si-C powder mixtures. Journal of Materials Research 20, 375–385 (2005). https://doi.org/10.1557/JMR.2005.0042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0042

Navigation