Skip to main content
Log in

Large-scale synthesis of amorphous phosphorus nitride imide nanotubes with high luminescent properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A facile solvothermal approach was successfully developed for the large-scale synthesis of amorphous phosphorus nitride imide (H3xP3N5+x) nanotubes with high luminescent properties by the reaction of 1,3,5-hexachlorotriphosphazene (P3N3Cl6) with sodium amide (NaNH2) at low temperatures. Transmission electron microscope images showed that the inner diameter of nanotubes is 120 ± 20 nm, wall thickness is 40 ± 10 nm, and length ranges from several to ten micrometers. Scanning electron microscope images revealed that the proportion of the nanotubes exceeds 90%. X-ray photoelectron spectroscopy spectra indicated that the binding energies of P2p and N1s are 133.30 and 398.40 eV, respectively, and the atomic ratio of P:N is 3:5.13. The infrared spectra of the sample are comparable to those of the reported HPN2 and HP4N7. Thermogravimetric analysis revealed that the product is very robust in a nonoxidizing atmosphere. The structure and the optical properties of the product and the annealed samples were investigated by x-ray diffraction and photoluminescence measurements, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Schnick: Solid-state chemistry with nonmetal nitrides, Angew. Chem. Int. Ed. Engl. 32, 806 (1993).

    Article  Google Scholar 

  2. J.V. Badding: Solid-state carbon nitrides, Adv. Mater. 9, 877 (1997).

    Article  CAS  Google Scholar 

  3. W. Schnick, J. Lucke and F. Krumeich: Phosphorus nitride P3N5: Synthesis, spectroscopic, and electron microscopic investigations, Chem. Mater. 8, 281 (1996).

    Article  CAS  Google Scholar 

  4. P. Kroll and W. Schnick: A density functional study of phosphorus nitride P3N5: Refined geometries, properties, and relative stability of alpha-P3N5 and gamma-P3N5 and a further possible high-pressure phase delta-P3N5 with kyanite-type structure, Chem. Eur. J. 8, 3530 (2002).

    Article  CAS  Google Scholar 

  5. S. Horstmann, E. Irran and W. Schnick: Phosphorus (V) nitride alpha-P3N5: Synthesis starting from tetraaminophosphonium iodide and crystal structure determination by synchrotron powder diffraction, Z. Anorg. Allg. Chem. 624, 620 (1998).

    Article  CAS  Google Scholar 

  6. S. Horstmann, E. Irran and W. Schnick: Synthesis and crystal structure of phosphorus (V) nitride alpha-P3N5, Angew. Chem. Int. Ed. Engl. 36, 1873 (1997).

    Article  CAS  Google Scholar 

  7. W. Schnick and J. Lucke: Preparation, crystal-structure, and IR spectroscopic investigation of phosphorus nitride imide, HPN2, Z. Anorg. Allg. Chem. 610, 121 (1992).

    Article  CAS  Google Scholar 

  8. S. Horstmann, E. Irran and W. Schnick: Phosphorus(v) nitride imide HP4N7: Synthesis from a molecular precursor and structure determination with synchrotron powder diffraction, Angew. Chem. Int. Ed. Engl. 36, 1992 (1997).

    Article  CAS  Google Scholar 

  9. S. Horstmann, E. Irran and W. Schnick: Synthesis, crystal structure, and properties of phosphorus (V) nitride imide HP4N7, Z. Anorg. Allg. Chem. 624, 221 (1998).

    Article  CAS  Google Scholar 

  10. K. Landskron, E. Irran and W. Schnick: High-temperature high-pressure synthesis of the highly condensed nitridophosphates NaP4N7, KP4N7, RbP4N7, and CsP4N7 and their crystal-structure determinations by x-ray powder diffraction, Chem. Eur. J. 5, 2548 (1999).

    Article  CAS  Google Scholar 

  11. Z.Y. Meng, Y.Y. Peng and Y.T. Qian: Microtubes and balls of amorphous phosphorus nitride imide (HPN2) prepared by a benzene-thermal method, Chem. Comm. 5, 469 (2001).

    Article  Google Scholar 

  12. F.A. Cotton and G. Wilkinson: Advanced Inorganic Chemitry, 6th ed. (John Wiley & Sons, New York, 1999), p. 316.

    Google Scholar 

  13. J.P. Xiao, Y. Xie, R. Tang and W. Luo: Benzene thermal conversion to nanocrystalline indium nitride from sulfide at low temperature, Inorg. Chem. 42, 107 (2003).

    Article  CAS  Google Scholar 

  14. Q.X. Guo, Y. Xie, X.J. Wang, S.C. Lv, T. Hou and X.M. Liu: Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures, Chem. Phys. Lett. 380, 84 (2003).

    Article  CAS  Google Scholar 

  15. X.B. Cao, Y. Xie and L.Y. Li: Crystallization of amorphous colloids: an effective approach for the rapid and large-scale preparation of antimony sulfide dendrites, J. Solid State Chem. 177, 202 (2004).

    Article  CAS  Google Scholar 

  16. H.Z. Gu, Y.L. Gu, Z.H. Li, Y.C. Ying and Y.T. Qian: Low-temperature route to nanoscale P3N5 hollow spheres, J. Mater. Res. 18, 2359 (2003).

    Article  CAS  Google Scholar 

  17. Z.Y. Meng, Y.Y. Peng, Z.P. Yang and Y.T. Qian: Synthesis and characterization of amorphous phosphorus nitride, Chem. Lett. 11, 1252 (2000).

    Article  Google Scholar 

  18. B. Xu and S. Holdcroft: 1st observation of phosphorescence from pi-conjugated polymers, J. Am. Chem. Soc. 115, 8447 (1993).

    Article  CAS  Google Scholar 

  19. M. Kawaguchi and K. Nozaki: Synthesis, structure, and characteristics of the new host material [(C3N3)2(NH)3]n, Chem. Mater. 7, 257 (1995).

    Article  CAS  Google Scholar 

  20. B. Jurgens, E. Irran, J. Senker, P. Kroll, H. Muller and W. Schnick: Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by x-ray powder diffractometry, solid-state NMR, and theoretical studies, J. Am. Chem. Soc. 125, 10288 (2003).

    Article  Google Scholar 

  21. D.R. Miller, D.C. Swenson and E.G. Gillan: Synthesis and structure of 2,5,8-triazido-s-heptazine: An energetic and luminescent precursor to nitrogen-rich carbon nitrides, J. Am. Chem. Soc. 126, 5372 (2004).

    Article  CAS  Google Scholar 

  22. Y. Xie, Y.T. Qian, W.Z. Wang, S.Y. Zhang and Y.H. Zhang: A benzene-thermal synthetic route to nanocrystalline GaN, Science 272, 1926 (1996).

    Article  CAS  Google Scholar 

  23. Q.X. Guo, Y. Xie, X.J. Wang, S.Y. Zhang, T. Hou and S.C. Lv: Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperature, Chem. Comm. 1, 26 (2004).

    Article  Google Scholar 

  24. L.Y. Chen, Y.L. Gu, L. Shi, Z.H. Yang, J.H. Ma and Y.T. Qian: Room temperature route to phosphorus nitride hollow spheres, Inorg. Chem. Comm. 7, 643 (2004).

    Article  CAS  Google Scholar 

  25. J. Zhao, R.Z. Che, J.R. Xu and N. Kang: The effects of high pressure on carbon nitride - In situ measurements of micro photoluminescence and infrared spectra, Appl. Phys. Lett. 70, 2781 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Q., Yang, Q., Zhu, L. et al. Large-scale synthesis of amorphous phosphorus nitride imide nanotubes with high luminescent properties. Journal of Materials Research 20, 325–330 (2005). https://doi.org/10.1557/JMR.2005.0041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0041

Navigation