Skip to main content
Log in

Synthesis and properties of nanocrystalline ceria powders

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline CeO2 powder was synthesized by a citrate-nitrate autoignition process and characterized by thermal analysis, x-ray diffraction, and impedance spectroscopy measurements. Nanocrystalline (20–40 nm) ceria powder with fluorite structure had formed in situ during the citrate-nitrate autoignition process. The powder prepared could be sintered to density more than 98% of theoretical density at 1450 °C. The nanocrystalline CeO2 exhibited an increase in conductivity in Ar and H2 than air above 600 °C, suggesting a possible electronic contribution to the conductivity at low oxygen partial pressures. Impedance measurements on the sintered samples unequivocally established the potential of this process in developing phase pure ceria compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Inaba and H. Tagawa: Ceria based solid electrolytes. Solid State Ionics 83, 1 (1996).

    Article  CAS  Google Scholar 

  2. M. Mogensen, N.M. Sammes, and G.A. Tompsett: Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 63 (2000).

    Article  CAS  Google Scholar 

  3. T.S. Stefanik and H.L. Tuller: Ceria-based gas sensors. J. Eur. Ceram. Soc. 21, 1967 (2001).

    Article  CAS  Google Scholar 

  4. J.R. Jurado: Present several items on ceria-based ceramic electrolytes: Synthesis, additive effects, reactivity and electrochemical behaviour. J. Mater. Sci. 36, 1133 (1993).

    Article  Google Scholar 

  5. V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Navmovich, A.V. Kovalevsky, A.A. Varemshnko, A.P. Viskup, A. Carnieiro, F.M.B. Marques, and J.R. Frade: Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 36, 1105 (2001).

    Article  CAS  Google Scholar 

  6. H.L. Tuller: Ionic conduction in nano crystalline materials. Solid State Ionics 131, 143 (2000).

    Article  CAS  Google Scholar 

  7. Y.M. Chiang, E.B. Lavik, I. Kosacki, H.L. Tuller, and J.Y. Ying: Defect and transport properties of nanocrystalline CeO2x. Appl. Phys. Lett. 69, 185 (1996).

    Article  CAS  Google Scholar 

  8. A. Tschope, J.Y. Ying, and H.L. Tuller: Catalytic redox activity and electrical conductivity of nanocrystalline non-stoichiometric cerium oxide. Sens. Actuators B 31, 111 (1996).

    Article  Google Scholar 

  9. Y.C. Zhou and M.N. Rahaman: Hydrothermal synthesis and sintering of ultrafine CeO2 powders. J. Mater. Res. 8, 1680 (1993).

    Article  CAS  Google Scholar 

  10. M. Hirano and E. Kato: The hydrothermal synthesis of ultrafine cerium (IV) oxide ceramics. J. Mater. Sci. Lett. 15, 1249 (1996).

    Article  CAS  Google Scholar 

  11. J.G. Li, T. Ikegami, J.H. Lee, and T. Mori: Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method. Acta Mater. 49, 419 (2001).

    Article  CAS  Google Scholar 

  12. J. Zhang, X. Ju, Z.Y. Wu, T. Liu, T.D. Hu, Y.N. Xie, and Z.L. Zhang: Structural characterization of cerium oxide nanocrystals prepared by the micro emulsion method. Chem. Mater. 13, 4192 (2001).

    Article  CAS  Google Scholar 

  13. X. Chu, W. Chung, and L.D. Schmidt: Sintering of sol-gel prepared submicrometer particles studied by transmission electron microscopy. J. Am. Ceram. Soc. 76, 2115 (1993).

    Article  CAS  Google Scholar 

  14. P.L. Chen and I.W. Chen: Reactive cerium IV oxide powders by the homogeneous precipitation method. J. Am. Ceram. Soc. 76, 1577 (1993).

    Article  CAS  Google Scholar 

  15. R.D. Purohit, B.P. Sharma, K.T. Pillai, and A.K. Tyagi: Ultrafine ceria powders via glycine-nitrate combustion. Mater. Res. Bull. 36, 2711 (2001).

    Article  CAS  Google Scholar 

  16. S.T. Arun and K.C. Patil: Combustion synthesis and properties of nanostructured ceria-zirconia solid solutions. Nanostruct. Mater. 10, 955 (1998).

    Article  Google Scholar 

  17. S. Nakane, T. Tachi, M. Yoshinaka, K. Hirota, and O. Yamaguchi: Characterization and sintering of reactive cerium IV oxide powders prepared by the hydrazine method. J. Am. Ceram. Soc. 80, 3221 (1997).

    Article  CAS  Google Scholar 

  18. H. Xu, L. Gao, H. Gu, and D. Yan: Synthesis of solid, spherical CeO2 particles prepared by the spray pyrolysis reaction method. J. Am. Ceram. Soc. 85, 139 (2002).

    Article  CAS  Google Scholar 

  19. Y.C. Zhou, R.J. Philips, and J.A. Switzer: Electrochemical synthesis and sintering of nanocrystalline cerium (IV) oxide powders. J. Am. Ceram. Soc. 78, 981 (1995).

    Article  CAS  Google Scholar 

  20. P.S. Devi and H.S. Maiti: A novel auto-ignited combustion process for the synthesis of Bi-Pb-Sr-Ca-Cu-O superconductor with a Tc (o) of 125K. J. Solid State Chem. 109, 35 (1994).

    Article  CAS  Google Scholar 

  21. P.S. Devi and H.S. Maiti: A modified citrate gel route for the synthesis of phase pure Bi2Sr2CaCu2O8 superconductor. J. Mater. Res. 9, 1357 (1994).

    Article  CAS  Google Scholar 

  22. A. Chakraborty, P.S. Devi, S. Roy, and H.S. Maiti: Lowtemperature synthesis of ultrafine La0.84Sr0.16MnO3 powder by an auto-ignition process. J. Mater. Res. 9, 986 (1994).

    Article  CAS  Google Scholar 

  23. A. Chakraborty, P.S. Devi, and H.S. Maiti: Preparation of La1-xSrxMnO3 (0<x< 0.6) powder by auto ignition of carboxylate-nitrate gels. Mater. Lett. 20, 63 (1994).

    Article  CAS  Google Scholar 

  24. A. Chakraborty, P.S. Devi, and H.S. Maiti: Low-temperature synthesis and some physical properties of barium substituted lanthanum manganite (La1-xBaxMnO3). J. Mater. Res. 10, 918 (1995).

    Article  CAS  Google Scholar 

  25. N. Chakrabarti and H.S. Maiti: Chemical synthesis of barium zirconate titanate powder by an autocombustion technique. J. Mater. Chem. 6, 1169 (1996).

    Article  CAS  Google Scholar 

  26. P.S. Devi, Y. Lee, J. Margolis, J.B. Parise, S. Sampath, H. Herman, and J.C. Hanson: Comparison of citrate-nitrate gel combustion and precursor plasma spray process for the synthesis of yittrium aluminum garnet. J. Mater. Res. 17, 2846 (2002).

    Article  CAS  Google Scholar 

  27. Impedance Spectroscopy Emphasizing Solid Materials and Systems, edited by J.R. MacDonald (John Wiley & Sons, New York, 1987).

    Google Scholar 

  28. J.C.C. Abrantes, J.A. Labrincha, and J.R. Frade: Representations of impedance spectra of ceramics. Part I. Simulated study cases. Mater. Res. Bull. 35, 955 (2000).

    Article  CAS  Google Scholar 

  29. Z. Zhan, T. Wen, H. Tu, and Z. Lu: AC impedance investigation of samarium-doped ceria. J. Electrochem. Soc. 148, A427 (2001).

    Article  Google Scholar 

  30. K. Huang, M. Feng, and J.B. Goodenough: Synthesis and electrical properties of dense Ce0.9Gd0.1O1.95 ceramics. J. Am. Ceram. Soc. 81, 357 (1998).

    Article  CAS  Google Scholar 

  31. I.R. Gibson, G.P. Dransfield, and J.T.S. Irvine: Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. J. Mater. Sci. 33, 4297 (1998).

    Article  CAS  Google Scholar 

  32. D.Y. Wang and A.S. Nowick: The grain boundary effect in doped ceria solid electrolytes. J. Solid State Chem. 35, 325 (1980).

    Article  CAS  Google Scholar 

  33. A. Tschope, E. Sommer, and R. Birringer: Grain size dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments. Solid State Ionics 139, 257 (2001).

    Google Scholar 

  34. N. Bonanos and E.P. Butler: Ionic conductivity of monoclinic and tetragonal ytria-zirconia single crystals. J. Mater. Sci. Lett. 4, 561 (1985).

    Article  CAS  Google Scholar 

  35. R.K. Slotwinski, N. Bonanos, and E.P. Butler: Electrical properties of MgO+Y2O3 and CaO+Y2O3 partially stabilized zirconias. J. Mater. Sci. Lett. 4, 641 (1985).

    Article  CAS  Google Scholar 

  36. C. Tian and S. Chan: Ionic conductivities, sintering temperatures and microstructures of bulk ceramics CeO2 doped with Y2O3. Solid State Ionics 134, 89 (2000).

    Article  CAS  Google Scholar 

  37. Y.M. Chiang, E.B. Lavik, and D.A. Blom: Defect thermodynamics and electrical properties of nanocrystalline oxides: Pure and doped CeO2. Nanostruct. Mater. 9, 633 (1997).

    Article  CAS  Google Scholar 

  38. R. Gerhardt and A.S. Nowick: Grain-boundary effect in ceria doped trivalent cations: II. Microstructure and microanalysis. J. Am. Ceram. Soc. 69, 641 (1986).

    Article  CAS  Google Scholar 

  39. G. Chiodelli, G. Flor, and M. Scagliotti: Electrical properties of the ZrO2-CeO2 system. Solid State Ionics 91, 109 1996).

    Article  CAS  Google Scholar 

  40. A. Arulraj, F. Goutenoire, M. Tabellout, O. Bohnke, and P. Lacorre: Synthesis and characterization of the anionic conductor system La2MO2O9-0.5xFx (x=0.02–0.30). Chem. Mater. 14, 2492 (2002).

    Article  CAS  Google Scholar 

  41. S.P.S. Badwal, F.T. Ciacchi, and J. Drennan: Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments. Solid State Ionics 121, 253 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sujatha Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, S., Devi, P.S. & Maiti, H.S. Synthesis and properties of nanocrystalline ceria powders. Journal of Materials Research 19, 3162–3171 (2004). https://doi.org/10.1557/JMR.2004.0442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0442

Navigation