Skip to main content
Log in

Correlation of stress state and nanohardness via heat treatment of nickel-aluminide multilayer thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Heat treatment of γ-Ni(Al)/γ′-Ni3Al multilayer thin films demonstrates that multilayer hardness correlates with the magnitude of biaxial stress in alternating layers. Films with a columnar grain morphology and (001) texture were fabricated over a range of volume fraction and bilayer thickness via direct current magnetron sputtering onto NaCl (001) substrates at 623 K. The films were removed from substrates, heat-treated at either 673 K or 1073 K in argon, and then mounted for nanoindentation and x-ray diffraction. The biaxial stress state in each phase was furnished from x-ray diffraction measurement of (002) interplanar spacings. The 673 K treatment increases the magnitude of alternating biaxial stress state by 70 to 100% and increases hardness by 25 to 100%, depending on bilayer thickness. In contrast, the 1073 K heat treatment decreases the stress magnitude by 70% and decreases hardness by 50%. The results suggest that the yield strength of these thin films is controlled, in part, by the magnitude of internal stress. Further, thermal treatments are demonstrated to be an effective means to manipulate internal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.C. Wang and R.N. Singh: Influence of the microstructure on the mechanical properties of Ni/Sn multilayered composites. Mater. Sci. Eng. A 271, 306 (1999).

    Article  Google Scholar 

  2. V. Ramaswamy, M.A. Phillips, W.D. Nix, and B.M. Clemens: Observation of the strengthening of Pt layers in Ni/Pt and Pd/Pt multilayers by in-situ substrate curvature measurement. Mater. Sci. Eng. A 319–321, 887 (2001).

    Article  Google Scholar 

  3. A. Misra and H. Kung: Deformation behavior of nanostructured metallic multilayers. Adv. Eng. Mater. 3, 217 (2001).

    Article  CAS  Google Scholar 

  4. D. Josell, D. van Heerdan, D. Shechtman, and D. Read: Mechanical properties of multilayer materials. Nanostruct. Mater. 12, 405 (1999).

    Article  Google Scholar 

  5. R. Banerjee, J.P. Fain, P.M. Anderson, and H.L. Fraser: Influence of crystallographic orientation and layer thickness on fracture behavior of Ni/Ni3Al multilayered thin films. Scripta Mater. 44, 2629 (2001).

    Article  CAS  Google Scholar 

  6. T. Foecke and D.E. Kramer: In situ TEM observations of fracture in nanolaminated metallic thin films. International Journal of Fracture 119, 351 (2003).

    Article  Google Scholar 

  7. P.M. Anderson, T. Foecke, and P.M. Hazzledine: Dislocationbased deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27 (1999).

    Article  CAS  Google Scholar 

  8. D.E. Kramer, M.F. Savage, A. Lin, and T. Foecke: Novel method for TEM characterization of deformation under nanoindents in nanolayered materials. Scripta Mater. 50, 745 (2004).

    Article  CAS  Google Scholar 

  9. G. Dehm, T.J. Balk, H. Edongue, and E. Arzt: Small-scale plasticity in thin Cu and Al films. Microelectron. Eng. 70, 412 (2003).

    Article  CAS  Google Scholar 

  10. P.M. Anderson and C. Li: Crack-dislocation modeling of ductile-to-brittle transitions in multilayered materials, in Thin Films: Stresses and Mechanical Properties IV, edited by P.H. Townsend, T.P. Weihs, J.E. Sanchez, Jr., and P. Borgensen, (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 731.

    Google Scholar 

  11. A.V. Lamm and P.M. Anderson: Yield maps for nanoscale metallic multilayers. Scripta Mater. 50, 757 (2004).

    Article  CAS  Google Scholar 

  12. Q. Li and P.M. Anderson: Dislocation confinement and ultimate strength in nanoscale metallic multilayers, in Mechanical Properties of Nanostructured Materials and Nanocomposites, edited by I. Ovid’ko, C.S. Pande, R. Krishnamoorti, E. Lavernia, and G. Skandan (Mater. Res. Soc. Symp. Proc. 791, Warrendale, PA, 2004) pp.131–136.

    Google Scholar 

  13. R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung: On the strengthening effects of interfaces in multilayer FCC metallic composites. Philos. Mag. A 82, 643 (2002).

    CAS  Google Scholar 

  14. R. Banerjee: M.S. Thesis, Ohio State University (1997).

    Google Scholar 

  15. G.B. Thompson: M.S. Thesis, Ohio State University (1998).

    Google Scholar 

  16. J.P. Fain: M.S. Thesis, Ohio State University (1999).

    Google Scholar 

  17. G.B. Thompson, R. Banerjee, X.D. Zhang, P.M. Anderson, and H.L. Fraser: Chemical ordering and texture in Ni-25 at% Al thin films. Acta Mater. 50, 643 (2002).

    Article  CAS  Google Scholar 

  18. E.A. Sperling, R. Banerjee, G.B. Thompson, and J.P. Fain: Processing and microstructural characterization of sputter-deposited Ni/Ni3Al multilayered thin films. J. Mater. Res. 18, 979 (2003).

    Article  CAS  Google Scholar 

  19. C.V. Thompson: Structure evolution during processing of polycrystalline films. Ann. Rev. of Mater. Sci. 30, 159 (2000).

    Article  CAS  Google Scholar 

  20. N. Sridhar, J.M. Rickman, and D.J. Srolovitz: Multilayer film stability. J. Appl. Phys. 82, 4852 (1997).

    Article  CAS  Google Scholar 

  21. R.L. Snyder and R. Jenkins: Introduction to Powder X-Ray Diffraction (John Wiley & Sons, New York, 1996).

    Google Scholar 

  22. J.L. Hay and G.M. Pharr: In ASM Handbook Volume 8: Mechanical Testing and Evaluation, edited by H. Kuhn and D. Medlin. (ASM International, Materials Park, OH, 2000), p. 232.

  23. H.C. Barshilia and K.S. Rajam: Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy. Surf. Coat. Technol. 155, 195 (2002).

    Article  CAS  Google Scholar 

  24. J. McKeown, A. Misra, H. Kung, R.G. Hoagland, and M. Nastasi: Microstructures and strength of nanoscale Cu-Ag multilayers. Scripta Mater. 46, 593 (2002).

    Article  CAS  Google Scholar 

  25. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23 (2001).

    Article  Google Scholar 

  26. D.L. Joslin and W.C. Oliver: A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5, 123 (1990).

    Article  CAS  Google Scholar 

  27. K.B. Yoder, D.S. Stone, R.A. Hoffman, and J.C. Lin: Elastic rebound between an indenter and a layered specimen: Part II. Using contact stiffness to help ensure reliability of nanoindentation measurements. J. Mater. Res. 13, 3214 (1998).

    Article  CAS  Google Scholar 

  28. Q. Li and P.M. Anderson: Dislocation-based modeling of the mechanical behavior of epitaxial metallic multilayer thin films (submitted).

  29. A.V. Lamm and P.M. Anderson: In Processing and Properties of Structural Nanomaterials, edited by L.L. Shaw, C. Suryanarayana, and R.S. Mishra (TMS, Warrendale, PA, 2003), pp. 27–34.

  30. P. Villars and L.D. Calvert, editors: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1996).

    Google Scholar 

  31. P.V.M. Rao, S.V. Suryanarayana, K.S. Murthy, and S.V.N. Naidu: The high-temperature thermal-expansion of Ni3Al measured by x-ray-diffraction and dilation methods. J. Phys: Condens. Matter. 1, 5357 (1989).

    CAS  Google Scholar 

  32. D.G. Pettifor: Theoretical predictions of structure and related properties of intermetallics. Materials Science and Technology Ser. 8, 345 (1992).

    Article  CAS  Google Scholar 

  33. J.P. Fain, R. Banerjee, D. Josell, P.M. Anderson, H.L. Fraser, N. Tymiak, and W. Gerberich: Morphological stability of Ni(Al)/ Ni3Al nanolaminate composites, in Nanophase and Nanocomposite Materials III, edited by S. Komarnen; J.C. Parker, and H. Hahn (Mater. Res. Soc. Symp. Proc. 581, Warrendale, PA, 2000), pp. 603–608.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan A. Sperling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperling, E.A., Anderson, P.M. & Hay, J.L. Correlation of stress state and nanohardness via heat treatment of nickel-aluminide multilayer thin films. Journal of Materials Research 19, 3374–3381 (2004). https://doi.org/10.1557/JMR.2004.0435

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0435

Navigation