Skip to main content
Log in

Functionally Graded Shape-Memory and Pseudoelastic Response in Ni-Rich/Ti-Rich and Vice Versa NiTi Multilayer Thin Films Deposited on Si(111)

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, functionally graded NiTi multilayer thin films were created by radio frequency magnetrun sputtering and subsequent annealing. The chemical compositions of the multilayer thin films which determined by energy-dispersive x-ray spectroscopy are about Ni51Ti/Ni49Ti (numbers indicate at.%). The structures, surface morphology, and transformation temperatures of annealed thin films at 500°C for 1 h were studied using grazing incidence x-ray diffraction, atomic force microscopy, and differential scanning calorimetry (DSC), respectively. Moreover, a coupled nanoindentation/atomic force microscopy technique is employed to characterize both the superelastic and shape memory effects. Specifically, an analysis of recoverable energy through the stress-induced phase transformation and recoverable strain through de-twinning and the subsequent thermally induced phase transformation were performed. The DSC and x-ray diffraction results indicated the multilayer was composed of austenitic and martensitic thin films. The continuous stiffness measurement technique showed that the stiffness and elastic modulus of the multilayer change gradually through the thickness of the multilayer thin films. Also, the thin films exhibited a combined pseudoelastic behavior and shape-memory effect which produces a two-way shape-memory effect in both thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Delaey, R.V. Krishnan, and H. Tas, J. Mater. Sci. 9, 1521 (1974).

    Article  Google Scholar 

  2. S. Miyazaki, K. Otsuka, and C.M. Wayman, Acta Metall. 37, 1885 (1989).

    Article  Google Scholar 

  3. Y. Liu and P.G. McCormick, Acta Metal. Mater. 38, 1321 (1990).

    Article  Google Scholar 

  4. Y. Fu, W. Huang, H. Du, X. Huang, J. Tan, and X. Gao, Surf. Coat. Technol. 145, 107 (2001).

    Article  Google Scholar 

  5. T. Shahrabi, S. Sanjabi, E. Saebnoori, and Z.H. Barber, Mater. Lett. 62, 2791 (2008).

    Article  Google Scholar 

  6. I. Shiota and Y. Miyamoto, Functionally Graded Materials (Burlington, VT: Elsevier Science, 1997).

    Google Scholar 

  7. B.A.S. Shariat and M.R. Eslami, Int. J. Solids Struct. 43, 4082 (2006).

    Article  Google Scholar 

  8. B.A.S. Shariat and M.R. Eslami, Compos. Struct. 78, 433 (2007).

    Article  Google Scholar 

  9. B.A.S. Shariat, R. Javaheri, and M.R. Eslami, Thin Wall Struct. 43, 1020 (2005).

    Article  Google Scholar 

  10. L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, and H. Purnawali, Mater. Des. 33, 577 (2012).

    Article  Google Scholar 

  11. S. Miyazaki, Y.Q. Fu, and W.M. Huang, Thin Film Shape Memory Alloys: Fundamentals and Device Applications, ed. S. Miyazaki, Y.Q. Fu, and W.M. Huang (Cambridge, UK: Cambridge University Press, 2009), p. 48.

    Chapter  Google Scholar 

  12. B. Winzek, S. Schmitz, H. Rumpf, T. Sterzl, R. Hassdorf, and S. Thienhaus, Mater. Sci. Eng. A 378, 40 (2004).

    Article  Google Scholar 

  13. Q. Meng, H. Yang, Y. Liu, and T. Nam, Scripta Mater. 67, 305 (2012).

    Article  Google Scholar 

  14. Y. Fu, H. Du, W. Huang, S. Zhang, and M. Hu, Sensor. Actuat. A: Phys. 112, 395 (2004).

    Article  Google Scholar 

  15. D.P. Cole, H.A. Bruck, and A.L. Roytburd, Strain 45, 232 (2009).

    Article  Google Scholar 

  16. R.M.S. Martins, N. Schell, H. Reuther, L. Pereira, K.K. Mahesh, and R.J.C. Silva, Thin Solid Films 519, 122 (2010).

    Article  Google Scholar 

  17. A. Ishida, M. Sato, Z.Y. Gao, and J. Alloys, Compd. 577, S184 (2013).

    Article  Google Scholar 

  18. L. Tan and W.C. Crone, Acta Mater. 50, 4449 (2002).

    Article  Google Scholar 

  19. Y. Fu, H. Du, and S. Zhang, Mater. Lett. 57, 2995 (2003).

    Article  Google Scholar 

  20. Y. Fu, H. Du, and S. Zhang, Surf. Coat. Technol. 167, 129 (2003).

    Article  Google Scholar 

  21. D.E. Burkes, J.J. Moore, and J. Alloys, Compd. 430, 274 (2007).

    Article  Google Scholar 

  22. H.C. Lingand and R. Kaplow, Metall. Trans. A 11, 77 (1980).

    Google Scholar 

  23. L. Chang and D.S. Grummon, Phil. Mag. A 76, 191 (1997).

    Article  Google Scholar 

  24. K.S.S. Eswar Raju, S. Bysakh, M.A. Sumesh, S.V. Kamat, and S. Mohan, Mater. Sci. Eng. A 476, 267 (2008).

    Article  Google Scholar 

  25. L. Qian, M. Li, Z. Zhou, H. Yang, and X. Shi, Surf. Coat. Technol. 195, 264 (2005).

    Article  Google Scholar 

  26. K.L. Johnson, Contact Mechanics (Cambridge, U.K.: Cambridge University Press, 1994).

    Google Scholar 

  27. G. Shaw, D.S. Stone, A.D. Johnson, A.B. Ellis, and W.C. Crone, Appl. Phys. Lett. 83, 257 (2003).

    Article  Google Scholar 

  28. A. Ishida, A. Takei, M. Sato, and S. Miyazaki, Thin Solid Films 281, 337 (1996).

    Article  Google Scholar 

  29. A. Ishida, M. Sato, T. Kimura, and S. Miyazaki, Philos. Mag. A 80, 967 (2000).

    Article  Google Scholar 

  30. K. Ho and G. Carman, Thin Solid Films 370, 18 (2000).

    Article  Google Scholar 

  31. W. Oliver and G. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  32. X. Li and B. Bhushan, Scripta Mater. 42, 929 (2000).

    Article  Google Scholar 

  33. X. Li and B. Bhushan, Mater. Charact. 48, 11 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Prof. Horst Hahn at the Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), for providing sample preparation and characterization facilities. The authors also acknowledge the partial financial support of this work by the Iranian National Science foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mohri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohri, M., Nili-Ahmadabadi, M. Functionally Graded Shape-Memory and Pseudoelastic Response in Ni-Rich/Ti-Rich and Vice Versa NiTi Multilayer Thin Films Deposited on Si(111). JOM 67, 1585–1593 (2015). https://doi.org/10.1007/s11837-015-1339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1339-2

Keywords

Navigation