Skip to main content
Log in

Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The sintering of nanosize powders of fully stabilized zirconia was investigated using the spark plasma sintering (SPS) method. The influence of sintering temperature, heating rate, direct current pulse pattern, sintering time, and sintering pressure on the final density and grain size of the product was investigated. The dependence of densification on temperature showed a maximum at 1200 °C, resulting with nearly fully dense zirconia with a crystallite size of about 100 nm. Heating rate (50~300 °C min-1) and sintering time (5–16 min) had no significant influence on the final density and the crystallite size. Pulsing patterns ranging from 2:2 to 48:2 (on:off) had no influence on the density or the crystallite size. However, the applied pressure had a significant influence on the final density but no apparent effect on crystallite size for a sintering temperature of 1200 °C and a hold time of 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Moriarty: Nanostructured materials. Rep. Prog. Phys. 64, 297 (2001).

    Article  CAS  Google Scholar 

  2. J. Schoonman: Nanostructured materials in solid state ionics. Solid State Ionics 135, 5 (2000).

    Article  CAS  Google Scholar 

  3. H. Gleiter: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).

    Article  CAS  Google Scholar 

  4. M. Cain and R. Morrell: Nanostructured ceramics: A review of their potential. Appl. Organomet. Chem. 15, 321 (2001).

    Article  CAS  Google Scholar 

  5. N. Setter: Electroceramics: Looking ahead. J. Eur. Ceram. Soc. 21, 1279 (2001).

    Article  CAS  Google Scholar 

  6. L. Vayssieres: On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnol. 1, 1 (2004).

    Article  CAS  Google Scholar 

  7. H. Hahn and K.A. Padmanabhan: Mechanical response of nanostructured materials. Nanostruct. Mater. 6, 191 (1995).

    Article  CAS  Google Scholar 

  8. R.B. Schwarz, S.R. Srinivasan, J.J. Petrovic, and C.J. Maggiore: Synthesis of molybdenum disilicide by mechanical alloying. Mater. Sci. Eng. A 155, 75 (1992).

    Article  Google Scholar 

  9. D.Z. de Florio and R. Muccillo: Sintering of zirconia-yttria ceramics studied by impedance spectroscopy. Solid State Ionics 123, 301 (1999).

    Article  Google Scholar 

  10. A. Bravo-Leon: Y. Morikawa, M. Kawahara, and M. J. Mayo: Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Mater. 50, 4555 (2002).

    Article  Google Scholar 

  11. V.V. Srdic, M. Winterer, and H. Hahn: Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis. J. Amer. Ceram. Soc. 83, 1853 (2000).

    Article  CAS  Google Scholar 

  12. F.T. Ciacchi, S.A. Nightingale, and S.P.S. Badwal: Microwave sintering of zirconia-yttria electrolytes and measurement of their ionic conductivity. Solid State Ionics 86–88, 1167 (1996).

    Article  Google Scholar 

  13. J. Kanters, U. Eisele, H. Boeder, and J. Roedel: Continuum mechanical description of sintering nanocrystalline zirconia. Adv. Eng. Mater. 3, 158 (2001).

    Article  CAS  Google Scholar 

  14. D.J. Chen and M.J. Mayo: Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3. J. Am. Ceram. Soc. 79, 906 (1996).

    Article  CAS  Google Scholar 

  15. D.D. Upadhyaya, A. Ghosh, G.K. Dey, R. Prasad, and A.K. Suri: Microwave sintering of zirconia ceramics. J. Mater. Sci. 36, 4707 (2001).

    Article  CAS  Google Scholar 

  16. R. Chaim, G. Basat, and A. Kats-Demyanets: Effect of oxide additives on grain growth during sintering of nanocrystalline zirconia alloys. Mater. Lett. 35, 245 (1998).

    Article  CAS  Google Scholar 

  17. U. Betz, A. Strum, J.F. Loeffler, W. Wagner, A. Wiedenmann, and H. Hahn: Microstuctural development during final-stage sintering of nanostructured zirconia based cermics. Mater. Sci. Eng. A 281, 68 (2000).

    Article  Google Scholar 

  18. G. Farne, F. Genel Ricciardiello, L. Kucich Podda, and D. Minichwlli: Innovative milling of ceramic powders: Influence on sintering zirconia alloys. J. Eur. Ceram. Soc. 19, 347 (1999).

    Article  CAS  Google Scholar 

  19. P. Duran, M. Villegaa, J.F. Fernandez, F. Capel, and C. Moure: Theoretically dense and nanostructured ceramics by pressureless sintering of nanosized Y-TZP powders. Mater. Sci. Eng. A 232, 168 (1997).

    Article  Google Scholar 

  20. D.C. Hague and M.J. Mayo: Sinter-forging of nanocrystalline zirconia I. Experimental. J. Am. Ceram. Soc. 80, 149 (1997).

    Article  CAS  Google Scholar 

  21. U. Betz, G. Scipione, E. Bonetti, and H. Hahn: Low-temperature deformation behavior of nanocrystalline 5 mol% yttria stabilized zirconia under tensile stresses. Nonostruct. Mater. 8, 845 (1997).

    Article  CAS  Google Scholar 

  22. D.D. Upadhyaya, A. Ghosh, K.R. Gurumurthy, and R. Prasad: Microwave sintering of cubic zirconia. Ceram. Int. 27, 415 (2001).

    Article  CAS  Google Scholar 

  23. X.J. Chen, K.A. Khor, S.H. Chan, and L.G. Yu: Preparation yttriastablized zirconia electrolyte by spark plasma sintering. Mater. Sci. Eng. A 341, 43 (2003).

    Article  Google Scholar 

  24. T. Takeuchi, I. Kondoh, N. Tamari, N. Balakrishnan, K. Nomura, H. Kageyama, and Y. Takeda: Improvement of mechanical strength of 8 mol% yttria-stabilized zirconia ceramics by sparkplasma sintering. J. Electrochem. Soc. 149, A455 (2002).

    Article  CAS  Google Scholar 

  25. T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell: Dynamics of solid-state cell for CO2 monitoring. Solid State Ionics 152, 823 (2002).

    Article  Google Scholar 

  26. T. Hibino, H. Tsunekawa, S. Tanimoto, and N. Sano: Improvement of a single-chamber solid-oxide fuel cell and evaluation of new designs. J. Electrochem. Soc. 147, 1338 (2000).

    Article  CAS  Google Scholar 

  27. A. Mogrocampero, C.A. Johnson, P.J. Bednarczyk, R.B. Dinwiddie, and H. Wang: Effect of gas pressure on thermal conductivity of zirconia thermal-barrier coatings. Sur. Coat. Technol. 94–95, 102 (1997).

    Article  Google Scholar 

  28. S.P.S. Badwal: Zirconia-based solid electrolytes: Microstructure, stability and ionic conductivity. Solid State Ionics 52, 23 (1992).

    Article  CAS  Google Scholar 

  29. I.R. Gibson, G.P. Dransfield, and J.T.S. Irvine: Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on ionic conductivity. J. Mater. Sci. 33, 4297 (1998).

    Article  CAS  Google Scholar 

  30. Z.A. Munir, F. Charlot, F. Bernard, and E. Gaffet: One-step synthesis and consolidation of nanophase materials. U.S. Patent No. 6200 515 (2001).

    Google Scholar 

  31. R. Orru, J.N. Woolman, G. Cao, and Z.A. Munir: Synthesis of dense nanometric MoSi2 through mechanical and field activation. J. Mater. Res. 16, 1439 (2001).

    Article  CAS  Google Scholar 

  32. J.W. Lee, Z.A. Munir, M. Shibuya, and M. Ohyanagi: Synthesis of dense TiB2/TiN nanocrystalline composites through mechanical and field activation. J. Am. Ceram. Soc. 84, 1209 (2001).

    Article  CAS  Google Scholar 

  33. M. Omori: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng. A 287, 183 (2000).

    Article  Google Scholar 

  34. N. Bertolino, J. Garay, U. Anselmi-Tamburini, and Z.A. Munir: High-flux current effects in interfacial reactions in Au-Al multilayers. Philos. Mag. B 82, 969 (2002).

    CAS  Google Scholar 

  35. J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir: Enhanced growth of intermetallic phases in the system Ni-Ti by current effects. Acta Mater. 51, 4487 (2003).

    Article  CAS  Google Scholar 

  36. W. Li and L. Gao: Rapid sintering of nanocrystalline ZrO2(3Y) by spark plasma sintering. J. Eur. Ceram. Soc. 20, 2441 (2000).

    Article  CAS  Google Scholar 

  37. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren: Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921 (2002).

    Article  CAS  Google Scholar 

  38. Y.I. Lee, J.H. Lee, S.H. Hong, and D.Y. Kim: Preparation of nanostructured TiO2 ceramics by spark plasma sintering. Mater. Res. Bull. 38, 925 (2003).

    Article  CAS  Google Scholar 

  39. U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, A. Tacca, F. Maglia, G. Chiodelli, and G. Spinolo: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies. J. Mater. Res. 19, 3263 (2004).

    Article  CAS  Google Scholar 

  40. J. Kanters, U. Eisele, H. Böder, and J. Rödel: Continuum mechanical description of sintering of nanocrystalline zirconia. Adv. Eng. Mater. 3, 158 (2001).

    Article  CAS  Google Scholar 

  41. A.L. Horovistiz, J.R. Frade, and L.R.O. Hein: Camparison of fracture surface and plane section analysis for ceramic grain size characterization. J. Eur. Ceram. Soc. 24, 619 (2004).

    Article  CAS  Google Scholar 

  42. S. Enzo, G. Fagherazzi, A. Benedetti, and S. Polizzi: A profilefitting procedure for analysis of broadened x-ray diffraction peaks. I. Methodology. J. Appl. Crystallogr. 21, 536 (1988).

    Article  Google Scholar 

  43. A. Benedetti, G. Fagherazzi, S. Enzo, and M. Battagliarin: A profile-fitting procedure for analysis of broadened x-ray diffraction peaks. II. Application and discussion of the methodology. J. Appl. Crystallogr. 21, 543 (1988).

    Article  Google Scholar 

  44. R.L. Coble: Diffusion models for hot pressing with surface energy and pressure effects as driving force. J. Appl. Phys. 41, 4798 (1970).

    Article  Google Scholar 

  45. G. Skandan, H. Hahn, B.H. Kear, M. Roddy, and W.R. Cannon: The effect of applied stress on densification of nanostructured zirconia during sinter forging. Mater. Lett. 20, 305 (1994).

    Article  CAS  Google Scholar 

  46. E. Garay, S.C. Glade, U. Anselmi-Tamburini, P. Asoka-kumar, and Z.A. Munir: Electric current enhanced point defect mobility in Ni3Ti intermetallic. Appl. Phys. Lett. 85, 573 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Munir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselmi-Tamburini, U., Garay, J.E., Munir, Z.A. et al. Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. Journal of Materials Research 19, 3255–3262 (2004). https://doi.org/10.1557/JMR.2004.0423

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0423

Navigation