Skip to main content
Log in

Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

By using molecular dynamics simulations, we have accurately determined the true contact area during plastic indentation of materials under an applied in-plane stress. We found that the mean pressure calculated from the true contact area varied slightly with applied pre-stress with higher values in compression than in tension and that the modulus calculated from the true contact area is essentially independent of the press-stress level in the substrate. These findings are largely consistent with the findings of Tsui, Pharr, and Oliver. On the other hand, if the contact area is estimated from approximate formulae, the contact area is underestimated and shows a strong dependence on the pre-stress level. When it is used to determine mean pressure and modulus, the empirically determined area leads to large errors. Our simulations demonstrate that this phenomenon, first reported for macroscale hardness measurements dating back to 1932, also exists at the nanometer-scale contact areas, apparently scaling over 10 orders of magnitude in contact area, from ~mm2 to ~100 nm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  2. O.A. Shenderova, J.P. Mewkill, and D.W. Brenner: Nanoindentation as a probe of nanoscale residual stress. Atomistic Simulation Results. Molecular Simulation 25, 81 (2000).

    Article  CAS  Google Scholar 

  3. K.F. Jarausch, J.D. Kiely, J.E. Houston, and P.E. Russell: Defectdependent elasticity: Nanoindentation as a probe of stress state. J. Mater. Res. 15, 1693 (2000).

    Article  CAS  Google Scholar 

  4. J.J. Gilman: In The Science of Hardness Testing and Its Research Applications, edited by J.H. Westbrook and H. Conrad (American Society for Metals, Metals Park, OH, 1973), pp. 51–74.

  5. J.B. Pethica: In Ion Implantation into Metals, edited by V. Asheworth, W. Grant, and R. Procter (Pergamon Press, Oxford, U.K., 1982), pp. 147–156.

  6. J.L. Loubet, J.M. Georges, O. Marchesini, and G. Meille: Vickers indentation curves of magnesium oxide (MgO). J. Tribology 106, 43 (1984).

    Article  CAS  Google Scholar 

  7. D. Newey, M.A. Wilkins, and H.M. Pollock: An ultra-low-load penetration hardness tester. J. Phys. E: Sci. Instrum. 15, 119 (1982).

    Article  CAS  Google Scholar 

  8. D. Stone, W.R. LaFontaine, P. Alexopoulos, T-W. Wu, and Che-Yu Li: An investigation of hardness and adhesion of sputterdeposited aluminum on silicon by utilizing acontinuous indentation test. J. Mater. Res. 3, 141 (1988).

    Article  CAS  Google Scholar 

  9. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  10. J.S. Field and M.V. Swain: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  11. S. Kokubo: Science Reports of the Tohoku Imperial University. 21, 256 (1932).

    Google Scholar 

  12. G. Sines and R. Carlson: Hardness measurements for determination of residual stresses. ASTM Bulletin 180, 35 (1952).

    Google Scholar 

  13. G.U. Oppel amd P.W. Hill: Strain measurements of the Root of Cracks and Notches, Proceeding of the Society for Experimental Stress Analysis 21, 206 (1964).

    Google Scholar 

  14. T.R. Simes, S.G. Mellor, and D.A. Hills: A note on the influence of residual-stress on measured hardness. J. Strain Analysis 19, 135 (1984).

    Article  Google Scholar 

  15. W.R. LaFontaine: C.A. Paszkiet, M.A. Korhonen, and Che-Yu Li: Residual stress measurements of thin aluminum metallizations by continuous indentation and x-ray stress measurement techniques. J. Mater. Res. 6, 2084 (1991).

    Article  CAS  Google Scholar 

  16. T.Y. Tsui, W.C. Oliver, and G.M. Pharr: Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752 (1996).

    Article  CAS  Google Scholar 

  17. A. Bolshakov, W.C. Oliver, and G.M. Pharr: Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations. J. Mater. Res. 11, 760 (1996).

    Article  CAS  Google Scholar 

  18. X. Chen and J.J. Vlassak: Numerical study on the measurement of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, 2974 (2001).

    Article  CAS  Google Scholar 

  19. S.J. Plimpton and B.A. Hendrickson: Parallel molecular dynamics with the embedded atom method, in Materials Theory and Modelling, edited by J. Broughton, P. Bristowe, and J. Newsam (Mater. Res. Soc. Symp. Proc. 291, Pittsburgh, PA, 1993), p. 37.

    Google Scholar 

  20. M.S. Daw and M.I. Baskes: Embedded atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  21. S.M. Foiles, M.I. Baskes, and M.S. Daw: Embedded atom method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt and their alloys. Phys. Rev. B 33, 7983 (1986).

    Article  CAS  Google Scholar 

  22. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).

    Article  CAS  Google Scholar 

  23. J.A. Zimmerman, C.L. Kelchner, P.A. Klein, J.C. Hamilton, and S.M. Foiles: Surface step effects on nanoindentation. Phys. Rev. Lett. 87, 165507 (2001).

    Article  CAS  Google Scholar 

  24. E.T. Lilleodden, J.A. Zimmerman, S.M. Foiles, and W.D. Nix: Atomistic simulation of elastic deformation and dislocation nucleation during nanoindentation, J. Mech. and Phys. Solids 51, 901 (2003).

    Article  CAS  Google Scholar 

  25. E.T. Lilleodden: In Indentation induced plasticity of thin metal films. Ph.D. Thesis, Department of Materials Science and Engineering, Stanford University, Stanford, California, 2001.

    Google Scholar 

  26. R. Kubo: Fluctuation-dissipation theorem. Rep. Prog. Theor. Phys. 33, 425 (1965).

    Google Scholar 

  27. G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  28. J. Frenkel: Z. Phys. 37, 572 (1926).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schall, J.D., Brenner, D.W. Atomistic simulation of the influence of pre-existing stress on the interpretation of nanoindentation data. Journal of Materials Research 19, 3172–3180 (2004). https://doi.org/10.1557/JMR.2004.0410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0410

Navigation