Skip to main content
Log in

Modeling and Simulation of Nanoindentation

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Gerberich, J. Nelson, E. Lilleodden, P. Anderson, and J. Wyrobek, Acta Mater. 44, 3585 (1996).

    Article  Google Scholar 

  2. J. Pethicai, R. Hutchings, and W.C. Oliver, Philos. Mag. A 48, 593 (1983).

    Article  Google Scholar 

  3. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  Google Scholar 

  4. G. Pharr and W. Oliver, MRS Bull. 17, 28 (1992).

    Article  Google Scholar 

  5. B. Bhushan, A.V. Kulkarni, W. Bonin, and J.T. Wyrobek, Philos. Mag. A 74, 1117 (1996).

    Article  Google Scholar 

  6. U. Landman, W. Luedtke, N.A. Burnham, and R.J. Colton, Science 248, 454 (1990).

    Article  Google Scholar 

  7. W.G. Hoover, A.J. De Groot, C.G. Hoover, I.F. Stowers, T. Kawai, B.L. Holian, T. Boku, S. Ihara, and J. Belak, Phys. Rev. A 42, 5844 (1990).

    Article  Google Scholar 

  8. C.L. Kelchner, S. Plimpton, and J. Hamilton, Phys. Rev. B 58, 11085 (1998).

    Article  Google Scholar 

  9. T. Zhu, J. Li, K.J. Van Vliet, S. Ogata, S. Yip, and S. Suresh, J. Mech. Phys. Solids 52, 691 (2004).

    Article  Google Scholar 

  10. C. Begau, A. Hartmaier, E.P. George, and G.M. Pharr, Acta Mater. 59, 934 (2011).

    Article  Google Scholar 

  11. G. Ziegenhain, H.M. Urbassek, and A. Hartmaier, J. Appl. Phys. 107, 061807 (2010).

    Article  Google Scholar 

  12. Y. Lee, J.Y. Park, S.Y. Kim, S. Jun, and S. Im, Mech. Mater. 37, 1035 (2005).

    Article  Google Scholar 

  13. K.J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Phys. Rev. B 67, 104105 (2003).

    Article  Google Scholar 

  14. R.E. Miller and A. Acharya, J. Mech. Phys. Solids 52, 1507 (2004).

    Article  MathSciNet  Google Scholar 

  15. R.E. Miller and D. Rodney, J. Mech. Phys. Solids 56, 1203 (2008).

    Article  Google Scholar 

  16. A. Gouldstone, K.J. Van Vliet, and S. Suresh, Nature 411, 656 (2001).

    Article  Google Scholar 

  17. A. Gouldstone, H.-J. Koh, K.-Y. Zeng, A. Giannakopoulos, and S. Suresh, Acta Mater. 48, 2277 (2000).

    Article  Google Scholar 

  18. K.J. Van Vliet, S. Tsikata, and S. Suresh, Appl. Phys. Lett. 83, 1441 (2003).

    Article  Google Scholar 

  19. D. Feichtinger, P. Derlet, and H. Van Swygenhoven, Phys. Rev. B 67, 024113 (2003).

    Article  Google Scholar 

  20. X.-L. Ma and W. Yang, Nanotechnology 14, 1208 (2003).

    Article  Google Scholar 

  21. J.H. Yoon, S.J. Kim, and H. Jang, in Materials Science Forum (Trans Tech Publ) (2004) p. 89.

  22. A. Hasnaoui, P. Derlet, and H. Van Swygenhoven, Acta Mater. 52, 2251 (2004).

    Article  Google Scholar 

  23. H. Jang and D. Farkas, Mater. Lett. 61, 868 (2007).

    Article  Google Scholar 

  24. S.N. Medyanik and S. Shao, Comput. Mater. Sci. 45, 1129 (2009).

    Article  Google Scholar 

  25. S. Shao and S.N. Medyanik, Mech. Res. Commun. 37, 315 (2010).

    Article  Google Scholar 

  26. S. Shao and S. Medyanik, Model. Simul. Mater. Sci. Eng. 18, 055010 (2010).

    Article  Google Scholar 

  27. S. Shao, H. Zbib, I. Mastorakos, and D. Bahr, J. Appl. Phys. 112, 044307 (2012).

    Article  Google Scholar 

  28. S. Shao, H. Zbib, I. Mastorakos, and D. Bahr, J. Eng. Mater. Tech. 135, 021001 (2013).

    Article  Google Scholar 

  29. E. Njeim and D. Bahr, Scr. Mater. 62, 598 (2010).

    Article  Google Scholar 

  30. J. Zhang, T. Sun, A. Hartmaier, and Y. Yan, Comput. Mater. Sci. 59, 14 (2012).

    Article  Google Scholar 

  31. J. Zimmerman, C. Kelchner, P. Klein, J. Hamilton, and S. Foiles, Phys. Rev. Lett. 87, 165507 (2001).

    Article  Google Scholar 

  32. K. Sun, W. Shen, and L. Ma, Comput. Mater. Sci. 81, 226 (2014).

    Article  Google Scholar 

  33. J. Belak and I. Stowers, Fundamentals of Friction: Macroscopic and Microscopic Processes (Berlin: Springer, 1992), p. 511.

    Book  Google Scholar 

  34. C.-L. Liu, T.-H. Fang, and J.-F. Lin, Mater. Sci. Eng. A 452, 135 (2007).

    Article  Google Scholar 

  35. J.E. Jones, Proc. R. Soc. London A Math. Phys. Eng. Sci. 106, 463 (1924).

    Article  Google Scholar 

  36. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Article  Google Scholar 

  37. D.W. Brenner, Phys. Rev. B 42, 9458 (1990).

    Article  Google Scholar 

  38. S. Foiles, M. Baskes, and M. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  Google Scholar 

  39. G. Ziegenhain, A. Hartmaier, and H.M. Urbassek, J. Mech. Phys. Solids 57, 1514 (2009).

    Article  Google Scholar 

  40. M. Yaghoobi and G.Z. Voyiadjis, Comput. Mater. Sci. 95, 626 (2014).

    Article  Google Scholar 

  41. I. Szlufarska, R.K. Kalia, A. Nakano, and P. Vashishta, Appl. Phys. Lett. 85, 378 (2004).

    Article  Google Scholar 

  42. P. Walsh, R.K. Kalia, A. Nakano, P. Vashishta, and S. Saini, Appl. Phys. Lett. 77, 4332 (2000).

    Article  Google Scholar 

  43. P. Walsh, A. Omeltchenko, R.K. Kalia, A. Nakano, P. Vashishta, and S. Saini, Appl. Phys. Lett. 82, 118 (2003).

    Article  Google Scholar 

  44. J.A. Stewart and D. Spearot, Model. Simul. Mater. Sci. Eng. 21, 045003 (2013).

    Article  Google Scholar 

  45. V. Mollica, A. Relini, R. Rolandi, M. Bolognesi, and A. Gliozzi, Eur. Phys. J. E 3, 315 (2000).

    Article  Google Scholar 

  46. G. Pätzold, A. Linke, T. Hapke, and D. Heermann, Z. Phys. B Condens. Matter 104, 513 (1997).

    Article  Google Scholar 

  47. N. Takahashi, M. Shiojiri, and S. Enomoto, Wear 146, 107 (1991).

    Article  Google Scholar 

  48. E. Tadmor, R. Phillips, and M. Ortiz, Langmuir 12, 4529 (1996).

    Article  Google Scholar 

  49. V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, J. Mech. Phys. Solids 47, 611 (1999).

    Article  MathSciNet  Google Scholar 

  50. E. Tadmor, R. Miller, R. Phillips, and M. Ortiz, J. Mater. Res. 14, 2233 (1999).

    Article  Google Scholar 

  51. R.A. Iglesias and E.P. Leiva, Acta Mater. 54, 2655 (2006).

    Article  Google Scholar 

  52. Z. Fanlin and S. Yi, Acta Mech. Solida Sin. 19, 283 (2006).

    Article  Google Scholar 

  53. J. Jin, S. Shevlin, and Z. Guo, Acta Mater. 56, 4358 (2008).

    Article  Google Scholar 

  54. G. Smith, E. Tadmor, N. Bernstein, and E. Kaxiras, Acta Mater. 49, 4089 (2001).

    Article  Google Scholar 

  55. T. Tsuru and Y. Shibutani, Phys. Rev. B 75, 035415 (2007).

    Article  Google Scholar 

  56. W.-G. Jiang, J.-J. Su, and X.-Q. Feng, Eng. Fract. Mech. 75, 4965 (2008).

    Article  Google Scholar 

  57. H. Lu and Y. Ni, Thin Solid Films 520, 4934 (2012).

    Article  Google Scholar 

  58. H. Lu, Y. Ni, J. Mei, J. Li, and H. Wang, Comput. Mater. Sci. 58, 192 (2012).

    Article  Google Scholar 

  59. W. Yu and S. Shen, Mater. Sci. Eng. A 526, 211 (2009).

    Article  Google Scholar 

  60. J. Li, Y. Ni, H. Wang, and J. Mei, Nanoscale Res. Lett. 5, 420 (2009).

    Article  Google Scholar 

  61. H. Lu, J. Li, and Y. Ni, Comput. Mater. Sci. 50, 2987 (2011).

    Article  Google Scholar 

  62. W. Yu and S. Shen, Comput. Mater. Sci. 46, 425 (2009).

    Article  Google Scholar 

  63. W. Yu and S. Shen, Eng. Fract. Mech. 77, 3329 (2010).

    Article  Google Scholar 

  64. L. Shilkrot, W.A. Curtin, and R.E. Miller, J. Mech. Phys. Solids 50, 2085 (2002).

    Article  Google Scholar 

  65. B. Devincre and M. Condat, Acta Metall. Mater. 40, 2629 (1992).

    Article  Google Scholar 

  66. H.M. Zbib, M. Rhee, and J.P. Hirth, Int. J. Mech. Sci. 40, 113 (1998).

    Article  Google Scholar 

  67. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov, Model. Simul. Mater. Sci. Eng. 15, 553 (2007).

    Article  Google Scholar 

  68. C. Zhou, S.B. Biner, and R. LeSar, Acta Mater. 58, 1565 (2010).

    Article  Google Scholar 

  69. C. Zhou, S. Biner, and R. LeSar, Scr. Mater. 63, 1096 (2010).

    Article  Google Scholar 

  70. C. Zhou and R. LeSar, Int. J. Plast. 30, 185 (2012).

    Article  Google Scholar 

  71. S. Huang, J. Wang, and C. Zhou, Mater. Sci. Eng. A 636, 430 (2015).

    Article  Google Scholar 

  72. M. Fivel, M. Verdier, and G. Canova, Mater. Sci. Eng. A 234, 923 (1997).

    Article  Google Scholar 

  73. M. Rathinam, R. Thillaigovindan, and P. Paramasivam, J. Mech. Sci. Technol. 23, 2652 (2009).

    Article  Google Scholar 

  74. T. Tsuru, Y. Shibutani, and Y. Kaji, Acta Mater. 58, 3096 (2010).

    Article  Google Scholar 

  75. D. Peirce, R. Asaro, and A. Needleman, Acta Metall. 30, 1087 (1982).

    Article  Google Scholar 

  76. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58, 1152 (2010).

    Article  Google Scholar 

  77. H.-J. Chang, M. Fivel, D. Rodney, and M. Verdier, C. R. Phys. 11, 285 (2010).

    Article  Google Scholar 

  78. W.D. Nix and H. Gao, J. Mech. Phys. Solids 46, 411 (1998).

    Article  Google Scholar 

  79. S. Qu, Y. Huang, G. Pharr, and K. Hwang, Int. J. Plast. 22, 1265 (2006).

    Article  Google Scholar 

  80. T. Britton, H. Liang, F. Dunne, and A. Wilkinson, Proc. R. Soc. London A Math. Phys. Eng. Sci. 466, 695 (2010).

    Article  Google Scholar 

  81. S. Kucharski, S. Stupkiewicz, and H. Petryk, Exp. Mech. 54, 957 (2014).

    Article  Google Scholar 

  82. Y. Wang, D. Raabe, C. Klüber, and F. Roters, Acta Mater. 52, 2229 (2004).

    Article  Google Scholar 

  83. B. Eidel, Acta Mater. 59, 1761 (2011).

    Article  Google Scholar 

  84. J. Alcala, A. Barone, and M. Anglada, Acta Mater. 48, 3451 (2000).

    Article  Google Scholar 

  85. X. Qiu, Y. Huang, W. Nix, K. Hwang, and H. Gao, Acta Mater. 49, 3949 (2001).

    Article  Google Scholar 

  86. Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, and R. Komanduri, Int. J. Plast. 24, 1990 (2008).

    Article  Google Scholar 

  87. N. Zaafarani, D. Raabe, R. Singh, F. Roters, and S. Zaefferer, Acta Mater. 54, 1863 (2006).

    Article  Google Scholar 

  88. M. Liu, C. Lu, K.A. Tieu, C.-T. Peng, and C. Kong, Sci. Rep. 5, 15072 (2015).

    Article  Google Scholar 

  89. Y. Liu, N. Li, S. Shao, M. Gong, J. Wang, R. McCabe, Y. Jiang, and C. Tome, Nat. Commun. 7, 11577 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an NSF CAREER Award (CMMI-1652662). S.H. is also grateful for partial support provided by The University of Missouri Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caizhi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zhou, C. Modeling and Simulation of Nanoindentation. JOM 69, 2256–2263 (2017). https://doi.org/10.1007/s11837-017-2541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2541-1

Navigation