Skip to main content
Log in

Nickel–tungsten bimetallic sulfide nanostructures of fullerene type

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bimetallic NiW sulfide nanostructures of the inorganic fullerene-like (IF-like) type were prepared by a chemical method employing ammonium thiotungstate and nickel nitrate as metal-sulfide precursors followed by sulfidation in H2S/H2 at 400 °C. The nanostructures were grown with a Ni excess, at an atomic ratio R = 0.85 (R = Ni/Ni + W). The x-ray diffraction patterns showed poorly crystalline WS2, WO2, NiS, and Ni9S8 phases. High-resolution electron microscopy micrographs revealed the formation of two fullerene-like nanostructures, nickel sulfide nanoparticles and long nanotubes filled with tungsten suboxide, both coated by several WS2 layers. The surface area of 18 m2/g measured by nitrogen adsorption (BET surface-area) revealed that these materials contained micropororosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Tenne, L. Margulis, M. Genut, and G. Hodes: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444 (1992).

    Article  CAS  Google Scholar 

  2. M. Remskar, Z. Skraba, F. Cleton, R. Sanjines, and F. Levy: MoS2 as microtubes. Appl. Phys. Lett. 69, 351 (1996).

    Article  CAS  Google Scholar 

  3. M. Remskar, Z. Skraba, C. Ballif, R. Sanjines, and F. Levy: Stabilization of the rhombohedral polytype in MoS2 and WS2 microtubes: TEM and AFM study. Surf. Sci. 435, 637 (1999).

    Article  Google Scholar 

  4. Y. Feldman, E. Wasserman, D.J. Srolovitz, and R. Tenne: Highrate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).

    Article  CAS  Google Scholar 

  5. P. Afanasiev, C. Geantet, C. Thomazeau, and B. Jouget: Molybdenum polysulfide hollow microtubules grown at room temperature from solution. Chem. Commun. 12, 1001 (2000).

    Article  Google Scholar 

  6. M.J. Yacaman, H. Lopez, P. Santiago, D.H. Galvan, I.L. Garzon, and A. Reyes: Studies of MoS2 structures produced by election irradiation. Appl. Physl. Lett. 69, 1065 (1996).

    Article  Google Scholar 

  7. C.N.R. Rao and M. Nath: Inorganic nanotubes. J. Chem. Soc., Dalton Trans. 1, 1 (2003).

    Article  Google Scholar 

  8. Y. Feldman, G.L. Frey, M. Homyonfer, V. Lyakhovitskaya, L. Margulis, H. Cohen, G. Hodes, J.L. Hutchison, and R. Tenne: Bulk synthesis of inorganic fullerene-like MS(2) (M = Mo,W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118, 5362 (1996).

    Article  CAS  Google Scholar 

  9. A. Rothshild, J. Sloan, and R. Tenne: Growth of WS2 nanotubes phases. J. Am. Chem. Soc. 122, 5169 (2000).

    Article  Google Scholar 

  10. C.M. Zelenski and P.K. Dorhout: Template synthesis of nearmonodisperse microscale nanofibers and nanotubules of MoS2. J. Am. Chem. Soc. 120, 734 (1998).

  11. A. Olivas, M. Avalos, and S. Fuentes: Evolution of ctystalline phases in nickel-tungsten sulfide catalysts. Mater. Lett. 43, 1 (2000).

    Article  CAS  Google Scholar 

  12. K.C. Pratt, J.V. Sanders, and N. Tamp: The role of nickel in the activity of unsupported Ni-Mo hydrodesulfurization catalysts. J. Catal. 66, 82 (1980).

    Article  CAS  Google Scholar 

  13. F.B. Garreau, H. Toulhoat, S. Kasztelan, and R. Paulus: Lowtemperature synthesis of mixed NiMo sulfides: Structural, textural and catalytic properties. Polyhedron. 5, 211 (1986).

    Article  CAS  Google Scholar 

  14. L. Blanchard, J. Grimblot, and J.P. Bonelle: X-ray photoelectron spectroscopy studies on nickel-tungsten mixed sulfide catalysts. J. Catal. 98, 229 (1986).

    Article  CAS  Google Scholar 

  15. R. Tenne: Doped and heteroatom-containing fullerene-like structures and nanotubes. Adv. Mater. 7, 965 (1995).

  16. M. Nath and C.N.R. Rao: MoSe2 and WSe2 nanotubes and related structures. Chem. Commun. 21, 2236 (2001).

  17. M. Nath, A. Govindaraj, and C.N.R. Rao: Simple synthesis of MoS2 and WS2 nanotubes. Adv. Mater. 13, 283 (2001).

    Article  CAS  Google Scholar 

  18. R.R. Chianelli and T.A. Pecoraro: Carbon-containing molybdenum and tungsten sulfide catalysts. U.S. Patent No. 4 508 847 (1985).

  19. T.A. Pecoraro and R.R. Chianelli: Hydrogenation processes using carbon-containing molybdenum and tungsten sulfide catalysts. U.S. Patent No. 4 528 089 (1985).

  20. S. Fuentes, G. Díaz, F. Pedraza, H. Rojas, and N. Rosas: The influence of a new preparation method on the catalytic properties of CoMo and NiMo sulfides. J. Catal. 113, 535 (1988).

    Article  CAS  Google Scholar 

  21. A. Olivas, E. Samano, and S. Fuentes: Hydrogenation of cyclohexanone on nickel-tungsten sulfide catalysts. Appl. Catal. A: General 220, 279 (2001).

    Article  CAS  Google Scholar 

  22. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1992).

  23. A. Rothshild, S.R. Cohen, and R. Tenne: WS2 nanotubes as tips in scanning probe microscopy. Appl. Phys. Lett. 75, 4025 (1999).

    Article  Google Scholar 

  24. H.W. Wang, P. Skeldon, G.E. Thompson, and G.C. Wood: Synthesis and characterization of molybdenum disulphide formed from ammonium tetrathiomolybdate. J. Mater. Sci. 32, 497 (1997).

    Article  CAS  Google Scholar 

  25. R.I. Walton, A.J. Dent, and S.J. Hibble: In situ investigation of the thermal decomposition of ammonium tetrathiomolybdate using combined time-resolved x-ray absortion spectroscopy and x-ray diffraction. Chem. Mater. 10, 3737 (1998).

    Article  CAS  Google Scholar 

  26. R.I. Walton and S.J. Hibble: A combined in situ x-ray absortion spectroscopy and x-ray diffraction study of the thermal decomposition of ammonium tetrathiotungstate. J. Mater. Chem. 9, 1347 (1999).

  27. G. Alonso, G. Berhault, A. Aguilar, V. Collins, C. Ornelas, S. Fuentes, and R.R. Chianelli: Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates. J. Catal. 208, 359 (2002).

    Article  CAS  Google Scholar 

  28. H. Nava, C. Ornelas, A. Aguilar, G. Berhault, S. Fuentes, and G. Alonso: Cobalt molybdenum sulfide catalysts prepared by in situ activation of bimetallic (Co-Mo) alkylthiomolybdates. Catal. Lett. 86, 257 (2003).

    Article  CAS  Google Scholar 

  29. R.R. Chianelli, A.F. Ruppert, M.J. Yacamán, and A. Vazquez: HREM studies of layered transition-metal sulfide catalytic materials. Catal. Today 23, 269 (1995).

    Article  CAS  Google Scholar 

  30. R.R. Chianelli: Amorphous and poorly crystalline transition metal chalcogenides. Int. Rev. Phys. Chem. 2, 127 (1985).

  31. A. Olivas, J. Cruz-Reyes, V. Petranovskii, M. Avalos, and S. Fuentes: Influence of preparation conditions on formation of crystalline phases of nickel sulfide. Mater. Lett. 38, 141 (1999).

    Article  CAS  Google Scholar 

  32. L. Margulis, G. Salitra, R. Tenne, and M. Talianken: Nested fullerene-like structures. Nature 365, 113 (1993).

    Article  CAS  Google Scholar 

  33. Y.Q. Zhu, W.K. Hsu, H. Terrones, S. Firth, N. Grobert, B.H. Chang, M. Terrones, B.Q. Wei, H.W. Kroto, D.R.M. Walton, C.B. Boothroyd, I. Kinloch, G.Z. Chen, A.H. Windle, and D.J. Fray: Morphology, structure and growth of WS2 nanotubes. J. Mater. Chem. 10, 2570 (2000).

    Article  CAS  Google Scholar 

  34. M. Homyonfer, B. Alperson, Y. Rosenberg, L. Sapir, S.R. Cohen, G. Hodes, and R. Tenne: Intercalation of inorganic fullerene-like structures yields photosensitive films and new tips for scanning probe microscopy. J. Am. Chem. Soc. 119, 2693 (1997).

    Article  CAS  Google Scholar 

  35. A. Olivas: Ph.D. Thesis, CICESE, Ensenada, B.C., México, 1998, appendix 1, p. 69.

  36. O. Glemser, J. Weidelt, and F. Freund: Genotypishe oxidhydrate des wolframs. Zur frague der wolframblauverbindungen. Z. Anorg. Allg. Chem. 332, 299 (1964).

    Article  CAS  Google Scholar 

  37. K.S. Liang, F.Z. Chien, S.C. Moss, and R.R. Chianelli: Structure of poorly crystalline MoS2. A modeling study. J. Non-Cryst. Solids 79, 251 (1986).

    Article  CAS  Google Scholar 

  38. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim: Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146 (2000).

    Article  CAS  Google Scholar 

  39. Y.Q. Zhu: W.K. Hsu, H.W. Kroto, and D.R.M. Walton: Carbon nanotube template promoted growth of NbS2 nanotubes/nanorods. Chem. Commun. 21, 2184 (2001).

    Article  Google Scholar 

  40. W.K. Hsu, Y.Q. Zhu, N. Yao, S. Firth, R.J.H. Clark, H.W. Kroto, and D.R.M. Walton: Titanium-doped molybdenum disulfide nanostructures. Adv. Funct. Mater. 11, 69 (2001).

    Article  CAS  Google Scholar 

  41. M. Homyonfer, R. Tenne, and Y. Feldman: Method for preparation of metal intercalated fullerene-like metal chalcogenides. U.S. Patent No. 6 217 843 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Olivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivas, A., Camacho, A., Yacamán, M.J. et al. Nickel–tungsten bimetallic sulfide nanostructures of fullerene type. Journal of Materials Research 19, 2176–2184 (2004). https://doi.org/10.1557/JMR.2004.0284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0284

Navigation