Skip to main content
Log in

Experimental and theoretical study of lead sulfide nanocrystals attached to nitrogen-doped carbon nanotubes

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Lead sulfide (\(PbS\)) nanocrystals anchored on nitrogen-doped multiwalled carbon nanotubes (\({CN}_{x}\)) have been synthesized employing an environmentally friendly and inexpensive wet chemistry process. \({CN}_{x}/PbS\) composites have been examined by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. Theorical ab initio calculations have been developed to determine the samples structural, morphological and optical properties to explain the experimental evidences. The \(PbS\) nanoparticles exhibit of 4 nm to 27 nm particle size with a face-centered cubic crystal structure and are homogeneously distributed along the carbon nanotubes. The nitrogen-doped CNTs acts as binding sites for the \(PbS\) clusters as ab initio theoretical study suggests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Terrones M (2004) Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. Int Mater Rev 49:325–377. https://doi.org/10.1179/174328004X5655

    Article  CAS  Google Scholar 

  2. Terrones M, Ajayan PM, Banhart F, Blase X, Carroll DL, Charlier JC, Czerw R, Foley B, Grobert N, Kamalakaran R, Kohler-Redlich P, Rühle M, Seeger T, Terrones H (2002) N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl Phys A 74:355–361. https://doi.org/10.1007/s003390201278

    Article  CAS  Google Scholar 

  3. Ewels CP, Glerup M (2005) Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol 5:1345–1363. https://doi.org/10.1166/jnn.2005.304

    Article  CAS  Google Scholar 

  4. Sun X, Yu RQ, Xu GQ, Hor TSA, Ji W (1998) Broadband optical limiting with multiwalled carbon nanotubes. Appl Phys Lett 73:3632–3634. https://doi.org/10.1063/1.122845

    Article  CAS  Google Scholar 

  5. Ayala P, Grünesis A, Kramberger C, Rümmeli MH, Solórzano IG, Freire FL, Pichler T (2007) Effects of the reaction atmosphere composition on the synthesis of single and multiwalled nitrogen-doped nanotubes. J Chem Phys 127:184709. https://doi.org/10.1063/1.2781509

    Article  CAS  Google Scholar 

  6. Sun Z, Liu Z, Li J, Tai G, Lau SP, Yan F (2012) Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater 24:5878–5883. https://doi.org/10.1002/adma.201202220

    Article  CAS  Google Scholar 

  7. Zhou ZJ, Yu GT, Ma F, Huang XR, Wu ZJ, Li ZR (2014) Theoretical investigation on nonlinear optical properties of carbon nanotubes with Stone-Wales defect rings. J Mater Chem C 2:306–311. https://doi.org/10.1039/C3TC31904K

    Article  CAS  Google Scholar 

  8. Kuo TF, Chi CC, Lin IN (2001) Synthesis of carbon nanotubes by laser ablation of graphites at room temperature. Jpn J Appl Phys 40:7147–7150. https://doi.org/10.1143/JJAP.40.7147

    Article  CAS  Google Scholar 

  9. Chen GZ, Fray DJ (2003) Recent development in electrolytic formation of carbon nanotubes in molten salts. J Min Metall 39:309–342. https://doi.org/10.2298/JMMB0302309C

    Article  CAS  Google Scholar 

  10. Xiong Z, Yun YS, Jin HJ (2013) Applications of carbon nanotubes for lithium ion battery anodes. Materials 6:1138–1158. https://doi.org/10.3390/ma6031138

    Article  CAS  Google Scholar 

  11. Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Sci 33:419–501. https://doi.org/10.1146/annurev.matsci.33.012802.100255

    Article  CAS  Google Scholar 

  12. Portillo Moreno O, Gutiérrez Pérez R, Palomino Merino R, Chávez Portillo M, Hernández Téllez G, Rubio Rosas E (2016) Optical and structural properties of PbSIn3+ nanocrystals grown by chemical bath. Thin Solid Films 616:800–807. https://doi.org/10.1016/j.tsf.2016.10.018

    Article  CAS  Google Scholar 

  13. Portillo Moreno O, Gutiérrez Pérez R, Chávez Portillo M, Hernández Téllez G, Rubio Rosas E, Cruz Cruz S, Moreno Rodríguez A (2016) Synthesis, morphological, optical and structuralproperties of PbSSe2−nanocrystals. Optik 127:8341–8349. https://doi.org/10.1016/j.ijleo.2016.06.022

    Article  CAS  Google Scholar 

  14. Feng W, Qin C, Li Y, Lwo W, An H, Feng Y (2014) A layer nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high performance photoswitch. Sci Rep 3777:1. https://doi.org/10.1038/srep03777

    Article  CAS  Google Scholar 

  15. Das A, Hall E, Wai CM (2014) Noncovalent attachment of Pbs quantum dots to single and multiwalled carbon nanotubes. J Nanotech 1155:285857. https://doi.org/10.1155/2014/285857

    Article  CAS  Google Scholar 

  16. Jana S, Banerjee D, Jha A, Chattopadhyay KK (2011) Fabrication of PbS nanoparticle coated amorphous carbon nanotubes: Structural, thermal and field emission properties. Mat Res Bull 46:1659–1664. https://doi.org/10.1016/j.materresbull.2011.06.006

    Article  CAS  Google Scholar 

  17. Gopi CVVM, Ravi S, Rao SS, Reddy AE, Kim HJ (2017) Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Sci Rep 46519:1. https://doi.org/10.1038/srep46519

    Article  CAS  Google Scholar 

  18. Chávez Portillo M, Mathew X, Juárez Santiesteban H, Pacio Castillo M, Portillo Moreno O (2016) Growth and characterization of nanocrystalline PbS: Li thin films. Superlattices Microstruct 98:242–252. https://doi.org/10.1016/j.spmi.2016.08.032

    Article  CAS  Google Scholar 

  19. Gutiérrez Pérez R, Portillo Moreno O, Palomino Merino R, Chaltel Lima LA, Márquez Specia MN, Hernández Téllez G, Rubio Rosas E, Moreno Rodríguez A (2018) Optical, morphological and structural characterization of Er3+-Bi3+ co-doped PbS nanocrystals grown by chemical bath. Optik 162:182–195. https://doi.org/10.1016/j.ijleo.2018.02.077

    Article  CAS  Google Scholar 

  20. Perea-López N, Rebollo-Plata B, Briones-León JA, Morelos-Gómez A, Hernández-Cruz D, Hirata GA, Meunier V, Botello-Méndez AR, Charlier JC, Maruyama B, Muñóz-Sandoval E, López-Urías F, Terrones M, Terrones H (2011) Millimeter-long carbon nanotubes: outstanding electron-emitting sources. ACS Nano 5:5072–5077. https://doi.org/10.1021/nn201149y

    Article  CAS  Google Scholar 

  21. Gracia-Espino E, Rebollo-Plata B, Martínez-Gutiérrez H, Muñoz-Sandoval E, López-Urías F, Endo M, Terrones H, Terrones M (2016) Temperature dependence of sensors based on silver-decorated nitrogen-doped multiwalled carbon nanotubes. J Sens 10:4319498. https://doi.org/10.1155/2016/4319498

    Article  CAS  Google Scholar 

  22. Lobo Guerrero A, Rebollo-Plata B, García Gallegos JH, Bahena Uribe D, Guzmán Altamirano MA, Cabal-Velarde J-G (2021) Study of bamboo-type carbon nanotubes with magnetic iron carbide nanoparticles fabricated by a modified CVD method. J Nanopart Res 23:94. https://doi.org/10.1007/s11051-021-05207-3

    Article  CAS  Google Scholar 

  23. Hammer B, Hansen LB (1999) J, K, Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhoffunctionals. Phys Rev B 59:7413–7421. https://doi.org/10.1103/PhysRevB.59.7413

    Article  Google Scholar 

  24. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006. https://doi.org/10.1103/PhysRevB.43.1993

    Article  CAS  Google Scholar 

  25. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  26. Bickelhaupt FM, van Eikema Hommes NJR, Guerra CF, Baerends EJ (1996) The carbon−lithium electron pair bond in (CH3Li)n (n = 1, 2, 4). Organometallics 15:2923–2931. https://doi.org/10.1021/om950966x

    Article  CAS  Google Scholar 

  27. Feng W, Qin C, Shen Y, Li Y, Luo W, An H, Feng Y (2014) A layer-nanostructured assembly of quantum dot/multiwwalled carbon nanotube for a high-performance photoswitch. Sci Rep 4(3777):1–7. https://doi.org/10.1038/srep03777

    Article  CAS  Google Scholar 

  28. Phuruangrat A, Thongtem T, Thongtem S (2011) Characterization and photo-luminescence of PbS nanocubes synthesized by a solvothermal method. Chalcogenide Lett 8:297–300

    CAS  Google Scholar 

  29. Choudhury N, Sarma BK (2009) Structural characterization of lead sulfide thin films by means of X-ray line profile analysis. Bull Mater Sci 32:43–47. https://doi.org/10.1007/s12034-009-0007-y

    Article  CAS  Google Scholar 

  30. Endo M, Kim YA, Fukai Y, Hayashi T, Terrones M, Terrones H, Dresselhaus MS (2001) Comparison study of semi-crystalline and highly crystalline multiwalled carbon nanotubes. Appl Phys Lett 79:1531–1533. https://doi.org/10.1063/1.1400774

    Article  CAS  Google Scholar 

  31. Gaiduk AP, Gaiduk PI, Larsen AN (2008) Chemical bath deposition of PbS nanocrystals: effect of substrate. Thin Solid Films 516:3791–3795. https://doi.org/10.1016/j.tsf.2007.06.122

    Article  CAS  Google Scholar 

  32. Stadelmann K, Elizabeth A, Sabanés NM, Domke KF (2017) The SERS signature of PbS quantum dot oxidation. Vib Spectrosc 91:157–162. https://doi.org/10.1016/j.vibspec.2016.08.008

    Article  CAS  Google Scholar 

  33. Xiong S, Xi B, Xu D, Wang C, Feng X, Zhou H, Qian Y (2007) L-Cysteine-assisted tunable synthesis of PbS of various morphologies. J Phys Chem C 111:16761–16767. https://doi.org/10.1021/jp075096z

    Article  CAS  Google Scholar 

  34. Thomsen C, Reich S (2007) Raman scattering in carbon nanotubes. In: Cardona M, Merlin R (eds) Light scattering in solid IX topics in applied physics. Springer, Berlin, pp 115–232

    Google Scholar 

  35. Hirschmann TCh, Dresselhaus MS, Muramatsu H, Seifert M, Wurstbauer U, Parzinger E, Nielsch K, Kim YA, Araujo PT (2015) G’ band in double- and triple-walled carbon nanotubes: a Raman study. Phys Rev B 91:075402. https://doi.org/10.1103/PhysRevB.91.075402

    Article  CAS  Google Scholar 

  36. Berciaud S, Ryu S, Brus LE, Heinz TF (2009) Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers. Nano Lett 9:346–352. https://doi.org/10.1021/nl8031444

    Article  CAS  Google Scholar 

  37. Osikoya AO, Wankasi D, Vala RMK, Dikio CW, Afolabi AO, Ayawei N, Dikio ED (2015) Synthesis, characterization and sorption studies of nitrogen-doped carbon nanotubes. Dig J Nanomater Biostruct 10:125–134

    Google Scholar 

  38. Coates J (2006) Interpretation of infrared spectra, a practical approach. In: Meyers MA, McKelvy ML (eds) Encyclopedia of analytical chemistry. John Wiley & Sons, Chichester, p 11

    Google Scholar 

  39. Wei S, Guo C, Wang L, Jiangfeng X, Dong H (2021) Bacterial synthesis of PbS nanocrystallites in one-step with l-cysteine serving as both sulfur source and capping ligand. Sci Rep 11:1216. https://doi.org/10.1038/s41598-020-80450-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank, M. del R. Tejeda-Máfara, D.E. Leyva-Tejeda, E. del R. Leyva-Tejeda, M.E. Javier Díaz-Méndez and S.A. Roa-Medina for her collaboration, to the Tecnológico Nacional de México—Instituto Tecnológico Superior de Irapuato, Benemérita Universidad Autónoma de Puebla and Universidad Autónoma del Estado de Hidalgo for allowing us to use their facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Rebollo-Plata or J. G. Cabal-Velarde.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebollo-Plata, B., Sampedro, M.P., Gómez-Espinoza, M. et al. Experimental and theoretical study of lead sulfide nanocrystals attached to nitrogen-doped carbon nanotubes. Carbon Lett. 33, 147–154 (2023). https://doi.org/10.1007/s42823-022-00411-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00411-0

Keywords

Navigation