Skip to main content
Log in

Morphology and electrical transport in pentacene films on silylated oxide surfaces

  • Articles—Organic Electronics Special Section
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A study comparing the morphology and electrical transport properties of pentacene films on underlayers of different self-assembled monolayers (SAMs) is presented. The SAMs studied as underlayers were phenyltrichlorosilane, n-octadecyltrichlorosilane, and t-butyldiphenylchlorosilane. Pentacene thin films were grown by vacuum sublimation on SiO2 surfaces treated with self-assembled monolayers. During deposition, substrates were held at a temperature of 70 °C. The morphologies of the films at different stages of deposition were studied by atomic force microscopy, and the transport properties of the films were characterized by I-V measurements in a simple field-effect transistor (FET) structure. The SAM underlayers strongly influence the film morphology in the first few molecular layers and hence significantly impact the electrical transport in the resulting FETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik: High-mobility polymer gate dielectric pentacene thin film transistors. J. Appl. Phys. 92, 5259 (2002).

    Article  CAS  Google Scholar 

  2. T.W. Kelley, D.V. Muyres, P.F. Baude, T.P. Smith, and T.D. Jones: High Performance Organic Thin Film Transistors, in Organic and Polymeric Materials and Devices, edited by P.W.M. Blom, N.C. Greenham, C.D. Dimitrakopoulos, and C.D. Frisbie (Mater. Res. Soc. Symp. Proc. 771, Warrendale, PA, 2003), p. 169, L6.5.

  3. D.J. Gundlach, C.C. Kuo, S.F. Nelson, and T.N. Jackson: Organic Thin Film Transistors with Field Effect Mobility > 2 cm2/V-s. 57th Device Research Conference Digest, pp. 164–165, (1999).

  4. M. Yoshida, S. Uemura, T. Kodsaza, T. Kamata, M. Matsuzawa, and T. Kawai: Surface Potential Control of an Insulator Layer for the High Performance Organic FET. Synth. Met. 137, 967–968 (2003).

  5. D.J. Gundlach, C.C. Kuo, C.D. Sheraw, J.A. Nichols, and T.N. Jackson: Improved Organic Thin Film Transistor Performance Using Chemically-Modified Gate Dielectrics. Proceedings of the SPIE, vol. 4466, p. 54–64.

  6. R. Ruiz, B. Nickel, N. Koch, L.C. Feldman, R.F. Haglund, A. Kahn, and G. Scoles: Pentacene ultrathin film formation on reduced and oxidized Si surfaces. Phys. Rev. B 67, 125406 (2003).

    Article  Google Scholar 

  7. M. Shtein, J. Mapel, J.B. Bensiger, and S.R. Forrest: Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors. Appl. Phys. Lett. 81, 268 (2002).

    Article  CAS  Google Scholar 

  8. F-J. Meyer zu Heringdorf, M.C. Reuter, and R.M. Tromp: Growth dynamics of pentacene thin films. Nature 412, 517 (2001).

    Article  CAS  Google Scholar 

  9. L.L. Kosbar, C.D. Dimitrakopoulos, and D.J. Mascaro: The Effect of Surface Preparation on the Structure and Electrical Transport in an Organic Semiconductor, in Electronic, Optical and Optoelectronic Polymers and Oligomers, edited by G.E. Jabbour and N.S. Sariciftci (Mater. Res. Soc. Symp. Proc. 665, Warrendale, PA, 2002), p. 401, C10.6.1.

  10. A. Salleo, M.L. Chabinyc, M.S. Yang, and R.A. Street: Polymer thin-film transistors with chemically modified dielectric interfaces. App. Phys. Lett. 81, 4383 (2002).

    Article  CAS  Google Scholar 

  11. C.D. Dimitrakopoulos, A.R. Brown, and A. Pomp: Molecular Beam Deposited Thin Films of Pentacene for Organic Field Effect Transistor Applications. J. Appl. Phys. 80, 2501 (1996).

    Article  CAS  Google Scholar 

  12. I.P.M. Bouchoms, W.A. Schoonveld, J. Vrijmoeth, and T.M. Klapwijk: Morphology identification of the thin film phases of vacuum evaporated pentacene on SiO2 substrates. Synth. Met. 104, 175 (1999).

    Article  CAS  Google Scholar 

  13. D.J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson, and D.G. Schlom: Pentacene Organic Thin Film Transistors—Molecular Ordering and Mobility. IEEE Elect. Dev. Lett. 18, 87 (1997).

    Article  CAS  Google Scholar 

  14. D. Knipp, R.A. Street, A. Völkel, and J. Ho: Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport. J. Appl. Phys. 93, 347 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Shankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar, K., Jackson, T.N. Morphology and electrical transport in pentacene films on silylated oxide surfaces. Journal of Materials Research 19, 2003–2007 (2004). https://doi.org/10.1557/JMR.2004.0255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2004.0255

Navigation