Skip to main content
Log in

Island growth of Y2BaCuO5 nanoparticles in (211∼1.5 nm/123∼10 nmN composite multilayer structures to enhance flux pinning of YBa2Cu3O7−δ films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A controlled introduction of second-phase Y2BaCuO5 (211) nanoparticles into YBa2Cu3O7−δ (123) thin films was achieved for the first time for the purpose of increasing flux pinning. The island-growth mode of 211 on 123 was utilized to obtain an area particle density >1011 cm-2 of 211 thick-disk-shaped nanoparticles in individual layers. Composite layered structures of (211y nanoparticles/123zN were deposited by pulsed laser deposition on LaAlO3 substrates, with N bilayers = 24 to 100, y thickness = 1 to 2 nm, and z thickness = 6 to 15 nm (assuming continuous layer coverage). With 211 addition, the critical current densities at 77 K were higher at magnetic fields as low as 0.1 T and increased as much as approximately 300% at 1.5 T. The superconducting transition temperature was reduced by approximately 2 to 4 K for 211 volume fraction <20%. Reinitiation of 123 growth after every 211 layer resulted in a smooth and flat surface finish on the films and also greatly reduced surface particulate formation especially in thicker films (∼ μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bourdillon and N.X. Tan Bourdillon, High Temperature Superconductors: Processing and Science (Academic Press, San Diego CA, 1994).

  2. D. Larbalestier, A. Gurevich, D. Matthew Feldmann, and A. Polyanskii, Nature 414, 368 (2001).

    Article  CAS  Google Scholar 

  3. M. Murakami, D.T. Shaw, and S. Jin, in Processing and Properties of High Tc Superconductors Volume 1, Bulk Materials, edited by S. Jin (World Scientific Publishing, River Edge, NJ, 1993).

  4. D.C. Larbalestier and M.P. Maley, Mater. Res. Bull. August (1993), p. 50.

  5. Y. Iijima, K. Onabe, N. Tugaki, N. Tanabe, N. Sadakara, O. Kohno, and Y. Ikeno, Appl. Phys. Lett. 60, 769 (1992).

    Article  CAS  Google Scholar 

  6. X.D. Wu, S.R. Foltyn, P.N. Arendt, W.R. Blumenthal, I.H. Campbell, J.D. Cotton, J.Y. Coulter, W.L. Hults, M.P. Maley, H.F. Safar, and J.L. Smith, Appl. Phys. Lett. 67, 2397 (1995).

    Article  CAS  Google Scholar 

  7. A. Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht, D.M. Kroeger, D.K. Christen, Q. He, B. Saffian, F.A. List, D.F. Lee, P.M. Martin, C.E. Klabunde, E. Hartfield, and V.K. Sikka, Appl. Phys. Lett. 69, 1795 (1996).

    Article  CAS  Google Scholar 

  8. S.R. Foltyn, E.J. Peterson, J.Y. Coulter, P.N. Arendt, Q.X. Jia, P.C. Dowden, M.P. Maley, X.D. Wu, and D.E. Peterson, J. Mater. Res. 12, 2941 (1997).

    Article  CAS  Google Scholar 

  9. T. Aytug, M. Paranthaman, S. Sathyamurthy, B.W. Kang, D.B. Beach, E.D. Specht, D.F. Lee, R. Feenstra, A. Goyal, D.M. Kroeger, K.J. Leonard, P.M. Martin, and D.K. Christen, ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 2001, <http://www.ornl.gov/HTSC/htsc.html>.

  10. N. Takezawa and K. Fukushima, Physica C 290, 31 (1997).

    Article  CAS  Google Scholar 

  11. Phase Diagrams for High Tc Superconductors, edited by J.D. Whitler and R.S. Roth (American Ceramic Society, Westerville OH, 1991).

  12. J.M.S. Skakle, Mater. Sci. Eng. R23, 1 (1998).

    Article  Google Scholar 

  13. K. Reichelt, Vacuum 38(12), 1083 (1988).

    Article  CAS  Google Scholar 

  14. V.M. Pan, G.G. Kaminsky, A.L. Kasatkin, M.A. Kuznetsov, V.G. Prokhorov, V.L. Svetchnikov, C.G. Tretiatchenko, V.S. Flis, S.K. Yushchenko, V.I. Matsui, and V.S. Melnikov, Supercond. Sci. Technol. 5, S48 (1992).

    Article  CAS  Google Scholar 

  15. M. Murakami, S. Gotoh, H. Fujimoto, K. Yamaguchi, N. Koshizuka, and S. Tanaka, Supercond. Sci. Technol. 4, S43 (1991).

    Article  CAS  Google Scholar 

  16. S. Jin, G.W. Kamlott, T.H. Tiefel, T. Kodas, T.L. Ward, and D.M. Kroeger, Physica C 181, 57 (1992).

    Article  Google Scholar 

  17. D. Shi, S. Sengupta, J.S. Luo, C. Varanasi, and P.J. McGinn, Physica C 213, 179 (1993).

    Article  CAS  Google Scholar 

  18. M. Chopra, S.W. Chan, R.L. Meng, and C.W. Chu, J. Mater. Res. 11, 1616 (1996).

    Article  CAS  Google Scholar 

  19. S. Sengupta, D. Shi, J.S. Luo, A. Buzdin, V. Gorin, V.R. Todt, C. Varanasi, and P.J. McGinn, J. Appl. Phys. 81, 7396 (1997).

    Article  CAS  Google Scholar 

  20. L. Zhou, S.K. Chen, K.G. Wang, X.Z. Wu, P.X. Zhang, and Y. Feng, Physica C 363, 99 (2001).

    Article  CAS  Google Scholar 

  21. T. Haugan, P. Barnes, R. Nekkanti, I. Maartense, L. Brunke, and J. Murphy, in Extended Abstracts of the 2001 International Workshop on Superconductivity Co-Sponsored by ISTEC and MRS (ISTEC, Minato-ku, Japan, 2001), p. 111.

  22. T.J. Haugan, P.N. Barnes, R.M. Nekkanti, I. Maartense, L.B. Brunke, and J. Murphy in Materials for High-Temperature Superconductor Technologies, edited by M.P. Paranthaman, M.W. Rupich, K. Salama, J. Mannhart, and T. Hasegawa (Mater. Res. Soc. Symp. Proc. 689, Warrendale, PA, 2002), pp. 217–221.

  23. J.W. Ekin, T.M. Larson, N.F. Bergren, A.J. Nelson, A.B. Swartzlander, L.L. Kazmerski, A.J. Panson, and B.A. Blankenship, Appl. Phys. Lett. 52, 1819 (1988).

    Article  CAS  Google Scholar 

  24. L.F. Goodrich, A.N. Srivastava, T.C. Stauffer, A. Roshko, and L.R. Vale, IEEE Trans Appl. Supercond. 4, 61 (1994).

    Article  Google Scholar 

  25. I. Maartense, A.K. Sarkar, and G. Kozlowski, Physica C 181, 25 (1991).

    Article  CAS  Google Scholar 

  26. A. Sarkar, B. Kumar, I. Maartense, and T.L. Peterson, J. Appl. Phys. 65, 2392 (1989).

    Article  CAS  Google Scholar 

  27. J.R. Thompson, L. Krusin-Elbaum, Y.C. Kim, D.K. Christen, A.D. Marwick, R. Wheeler, C. Li, S. Patel, D.T. Shaw, P. Lisowski, and J. Ullmann, IEEE Trans. Appl. Supercond. 5, 1876 (1995).

    Article  Google Scholar 

  28. J.R. Thompson, J.G. Ossandon, L. Krusin-Elbaum, H.J. Kim, K.J. Song, D.K. Christen, and J.L. Ullmann, Physica C 378–381 (2002), p. 409.

    Article  Google Scholar 

  29. Q.X. Jia, S.R. Foltyn, P.N. Arendt, and J.F. Smith, Appl. Phys. Lett. 80, 1601 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Haugan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haugan, T., Barnes, P.N., Maartense, I. et al. Island growth of Y2BaCuO5 nanoparticles in (211∼1.5 nm/123∼10 nmN composite multilayer structures to enhance flux pinning of YBa2Cu3O7−δ films. Journal of Materials Research 18, 2618–2623 (2003). https://doi.org/10.1557/JMR.2003.0366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0366

Navigation