Skip to main content
Log in

Enhanced flux pinning properties for GdBa2Cu3O7−x films with nanosized La0.67Sr0.33MnO3 inclusions on SrTiO3 substrate by RF magnetic sputtering method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La0.67Sr0.33MnO3 (LSMO) nanoparticles/SrTiO3 (STO) structures were prepared as substrates using RF magnetron sputtering and GdBa2Cu3O7−x [(Gd)BCO] films were deposited on top. A significant improvement in superconductivity is observed under a magnetic field parallel to the GBCO H//c-axis. Due to the wider hysteresis loop, we observe that the Jc value of (Gd)BCO films on LSMO/STO remains at 1.0 × 105 A cm−2 at 77 K and 3 T magnetic field compared to 1.0 × 102 A cm−2 for (Gd)BCO films grown on bare STO. A significant enhancement of Fp and a shift of the [(Fp)max] magnetic field from 0.8 to 1.5 T. LSMO-induced defects and pinned Vortex properties in GdBa2Cu3O7−x matrix were investigated. We find that the formation of threading dislocation defects along the H//c-axis is the source of the improved induced properties in the GdBa2Cu3O7−x matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. M. Guidry, Y. Sun, Cl. Wu, Front. Phys. China 5, 171–175 (2010)

    Article  Google Scholar 

  2. K.A. Müller, A. Shengelaya, Dielectricly. J. Supercond. Nov. Magn. 26, 491–493 (2013)

    Article  Google Scholar 

  3. U. Chatterjee, D. Ai, J. Zhao et al., PNAS 23, 9346–9349 (2011)

    Article  Google Scholar 

  4. M. Mumtaza, L. Ali, Mubasher et al., Cryogenics 105, 103021 (2020)

    Article  Google Scholar 

  5. A. Abrar, M. Khan, J. Low. Temp. Phys. 199, 1268–1298 (2020)

    Article  Google Scholar 

  6. F.-C. Hsu, J.-Y. Luo, K.-W. Yeh et al., Proc. Natl. Acad. Sci. 105, 14262 (2008)

    Article  CAS  Google Scholar 

  7. Y. Mizoguchi, Y. Takano, J. Phys. Soc. Jpn. 79, 102001 (2010)

    Article  Google Scholar 

  8. Q. Nouailhetas, A. Koblischka-Veneva, M.R. Koblischka et al., AIP Adv. 11, 015230 (2021)

    Article  CAS  Google Scholar 

  9. M.R. Koblischka, Y. Slimani, A. Koblischka-Veneva et al., Materials 13, 5018 (2020)

    Article  CAS  Google Scholar 

  10. E. Hannachi, K.A. Mahmoud et al., Materials 3, 1034 (2022)

    Article  Google Scholar 

  11. M.R. Koblischka, A. Koblischka-V eneva, XianLin Zeng et al., Crystals 10, 986 (2020)

    Article  CAS  Google Scholar 

  12. G. Blatter, M.V. Feigelman, V.B. Geshkenbein et al., Rev. Mod. Phys. 66(4), 1125–1388 (1994)

    Article  CAS  Google Scholar 

  13. T. Petrisor Jr., M.S. Gabor, C. Tiusan et al., J. Appl. Phys. 112, 5 (2012)

    Article  Google Scholar 

  14. S.R. Foltyn, L. Civale, J.L. MacManus-Driscoll et al., Nature Mater. 6, 631–642 (2007)

    Article  CAS  Google Scholar 

  15. Y. Slimani, E. Hannachi, M.K. Ben Salem et al., J. Supercond. Nov. Magn. 28, 3001–3010 (2015)

    Article  CAS  Google Scholar 

  16. B. Maiorov, S.A. Baily, H. Zhou et al., Nat. Mater. 8, 398–404 (2009)

    Article  CAS  Google Scholar 

  17. E. Hannachi, M.A. Almessiere, Y. Slimani et al., J. Alloys Compd. 812, 152150 (2020)

    Article  CAS  Google Scholar 

  18. Y. Slimani, E. Hannachi, A. Ekicibil et al., J. Alloys Compd. 781, 664–673 (2019)

    Article  CAS  Google Scholar 

  19. Y. Slimania, M.A. Almessiere, E. Hannachi et al., Ceram. Int. 45, 6828–7683 (2019)

    Article  Google Scholar 

  20. M.K. Ben Salem, E. Hannachi, Y. Slimani et al., Ceram. Int. 40, 4953–4962 (2014)

    Article  CAS  Google Scholar 

  21. P. Mele, K. Matsumoto, T. Horide et al., Supercond. Sci. Tech. (2008). https://doi.org/10.1088/0953-2048/21/3/032002

    Article  Google Scholar 

  22. D.M. Feldmann, T.G. Holesinger, B. Maiorov et al., Supercond. Sci. Tech. 23, 115016 (2010)

    Article  Google Scholar 

  23. A. Hamrita, Y. Slimani, M.K. Ben Salem et al., Ceram. Int. 40, 1461–1470 (2014)

    Article  CAS  Google Scholar 

  24. Y. Slimania, E. Hannachi, F. Ben Azzouz et al., Cryogenics 92, 5–12 (2018)

    Article  Google Scholar 

  25. J.H. Wimbush, R.B. Durrell et al., IEEE T Appl. Supercon. 3, 3148–3151 (2009)

    Article  Google Scholar 

  26. S.C. Wimbush, J.H. Durrell, C.F. Tsai et al., Sci. Technol. 23, 045019 (2010)

    Google Scholar 

  27. A.V. Ushakov, I.V. Karpov, V.G. Demin et al., J. Mater. Sci: Mater. Electron. 30, 15592–15598 (2019)

    CAS  Google Scholar 

  28. Xu. Kun, D. Zhou, B. Li et al., PHYSICA C 510, 54–56 (2015)

    Article  Google Scholar 

  29. M. Rekaby, Appl. Phys. A 126, 664 (2020)

    Article  CAS  Google Scholar 

  30. A.K. Jha, K. Matsumoto, T. Horide et al., J. Appl. Phys. 122, 093905 (2017)

    Article  Google Scholar 

  31. J. Gutierrez, T. Puig, M. Gibert, C. Moreno et al., Appl. Phys. Lett. 94, 172513 (2009)

    Article  Google Scholar 

  32. A.K. Jha, N. Khare, R. Pinto, J. Appl. Phys. 110, 113920 (2011)

    Article  Google Scholar 

  33. D.H. Tran, W.B.K. Putri, C.H. Wie et al., Thin Solid Films 526, 241–245 (2012)

    Article  CAS  Google Scholar 

  34. Z. Xie, Z. Li, H. Lu, Y. Wang et al., J. Mater. Sci: Mater. Electron. 31, 19056–19063 (2020)

    Google Scholar 

  35. F. Touri, A. Sahari, A. Zouaoui et al., Surf. Rev. Lett. 27, 1950114 (2020)

    Article  CAS  Google Scholar 

  36. R. Bean, Mod. Phys. 1, 31–39 (1964)

    Article  Google Scholar 

  37. E.M. Gyorgy, R.B. van Dover, K.A. Jackson et al., Appl. Phys. Lett. 55, 283 (1989)

    Article  CAS  Google Scholar 

  38. M. Tange, R. Yoshizaki, J. Phys. Soc. Jpn. 78, 024703 (2009)

    Article  Google Scholar 

  39. J.H. Kwon, Y.F. Meng, L.J. Wu et al., Supercond. Sci. Technol. 31, 105006 (2018)

    Article  Google Scholar 

  40. J.C. Nie, Z.Y. Hua, Q.Y. Tu et al., PHYSICA C 460, 1353–1354 (2007)

    Article  Google Scholar 

  41. J. Wang, C.-F. Tsai, Z. Bi et al., IEEE T Appl. Supercon. 3, 3503–3506 (2009)

    Article  Google Scholar 

  42. S.C. Wimbush, J.H. Durrell, C.F. Tsai et al., Supercond. Sci. Technol. 23, 045019 (2010)

    Article  Google Scholar 

  43. M.G. Blamire, R.B. Dinner, S.C. Wimbush et al., Supercond. Sci. Technol. 22, 025017 (2009)

    Article  Google Scholar 

Download references

Funding

National Natural Science Foundation of China, Grant No 51502168, Ying Wang, Grant No 11504227, Ying Wang, Science and Technology Innovation Plan Of Shanghai Science and Technology Commission, Grant No 19DZ2271100, Ying Wang

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TW, WW and YW. The first draft of the manuscript was written by TW and WW and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ying Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, W. & Wang, Y. Enhanced flux pinning properties for GdBa2Cu3O7−x films with nanosized La0.67Sr0.33MnO3 inclusions on SrTiO3 substrate by RF magnetic sputtering method. J Mater Sci: Mater Electron 34, 257 (2023). https://doi.org/10.1007/s10854-022-09765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09765-7

Navigation