Skip to main content
Log in

Determination of hardness from nanoscratch experiments: Corrections for interfacial shear stress and elastic recovery

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A frequent application of the nanoscratch technique is to estimate hardness of ultrathin films when substrate effects are encountered with the nanoindentation technique. A model based on the work of Goddard and Wilman, which assumes a rigid-plastic behavior of the deformed surfaces, is commonly used for the determination of hardness from scratch tests, yet it overestimates the hardness of materials by as much as a factor of three at very shallow indentation depths on the order of 1–10 nm. The Goddard and Wilman model was extended in this paper to include the effects of the component of the shear stress tangential to the meridianal plane and the elastic recovery of the plastically deformed surfaces assuming elastic-perfectly-plastic material behavior. The proposed model was subsequently verified by performing nanoscratch experiments on fused quartz, which is homogeneous and isotropic with no known surface layers and with known hardness. The hardness was calculated using both the model based on the work of Goddard and Wilman and the extended model. The hardness calculated using the extended model was in very close agreement with the accepted value of bulk hardness of fused quartz over the range of scratch depths tested, showing the importance of the effects of elastic recovery and interfacial shear stress. The model was further verified for the case of a pure aluminum sample and the native thin film coating of alumina that forms on the surface upon air exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Haque and M.T.A. Saif, Exp. Mech. 42, 123 (2002).

    Article  CAS  Google Scholar 

  2. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  3. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  4. A.K. Bhattacharya and W.D. Nix, Int. J. Solids Struct. 24, 1287 (1988).

    Article  Google Scholar 

  5. X. Chen and J.J. Vlassak, J. Mater. Res. 16, 2974 (2001).

    Article  CAS  Google Scholar 

  6. B. Bhushan, V.S. Williams, and R.V. Shack, ASME J. of Tribol. 110, 563 (1988).

    Article  CAS  Google Scholar 

  7. Y. Tsukamato, H. Yamaguchi, and M. Yanagisawa, Thin Solid Films 154, 171 (1987).

    Article  Google Scholar 

  8. F. Mohs, Grundriss der Mineralogie, (1824), English Translation by W. Haidinger, Treatise of Mineralogy (Constable, Edinburgh, Scotland, 1825).

  9. J. Williams, Tribol. Int. 29, 675 (1996).

    Article  CAS  Google Scholar 

  10. X. Li and B. Bhushan, J. Mater. Res. 14, 2328 (1999).

    Article  CAS  Google Scholar 

  11. R. Consiglio, N.X. Randall, B. Bellaton, and J. von Stebut, Thin Solid Films 332, 151 (1998).

    Article  CAS  Google Scholar 

  12. B. Bhushan, Handbook of Micro/Nanotribology, 2nd ed. (CRC, Boca Raton, FL, 1999).

    Google Scholar 

  13. B. Bhushan, K. Gupta, and M. Azarian, Wear 181–183, 743 (1995).

    Article  Google Scholar 

  14. E.R. Kral, K. Komvopoulos, and D.B. Bogy, ASME J. Tribol. 118, 1 (1996).

    Article  CAS  Google Scholar 

  15. N. Maan and A. Broese Van Groenou, Wear 42, 365 (1977).

    Article  CAS  Google Scholar 

  16. K. Komvopoulos, N. Saka, and N.P. Suh, ASME J. Tribol. 108, 301 (1986).

    Article  CAS  Google Scholar 

  17. T.C. Buttery and J.F. Archard, Proc. Inst. Mech. Eng. 185, 537 (1971).

    Article  Google Scholar 

  18. C.A. Brookes, P. Green, P.H. Harrison, and B. Moxley, J. Phys. D: Appl. Phys. 5, 1284 (1972).

    Article  CAS  Google Scholar 

  19. T.A. Adler and R.P. Walters, Wear 162164, 713 (1993).

    Article  Google Scholar 

  20. A. Rodrigo, P. Perillo, and H. Ichimura, Surf. Coat. Technol. 124, 87 (2000).

    Article  CAS  Google Scholar 

  21. H. Ichimura and A. Rodrigo, Surf. Coat. Technol. 126, 152 (2000).

    Article  CAS  Google Scholar 

  22. A. Rodrigo and H. Ichimura, Surf. Coat. Technol. 148, 8 (2001).

    Article  CAS  Google Scholar 

  23. H. De Beurs, G. Minholts, and J.Th.M. De Hosson, Wear 132, 59 (1989).

    Article  CAS  Google Scholar 

  24. Friction, Lubrication and Wear Technology, ASM Handbook, Vol. 18 (ASM International, New York, 1992).

  25. K. Li, Y. Shapiro, and J.C.M. Li, Acta Mater. 46, 5569 (1998).

    Article  CAS  Google Scholar 

  26. B.J. Briscoe, A. Delfino, and E. Pellilo, Wear 225–229, Part 1, 319 (1999).

    Article  Google Scholar 

  27. M.C. Shaw, Mech. Chem. Eng. Trans. I. E. Aust., MC8, 73 (1972).

    Google Scholar 

  28. J. Goddard and H. Wilman, Wear 5, 114 (1962).

    Article  Google Scholar 

  29. K. Komvopoulos, N. Saka, and N.P. Suh, ASME J. Tribol. 107, 452 (1985).

    Article  CAS  Google Scholar 

  30. Nano-Scratch User Manual, Hysitron, Inc., Minneapolis, MN.

  31. N.A. Stillwell and D. Tabor, Proc. Phys. Soc. London 78, 169 (1961).

    Article  Google Scholar 

  32. Z. Li, Y-T. Cheng, H.T. Yang, and S. Chandrasekar, Surf. Coat. Technol. 154, 124 (2002).

    Article  CAS  Google Scholar 

  33. V. Jardet, H. Zahouni, J.L. Loubet, and T.G. Mathia, Wear 218, 8 (1998).

    Article  Google Scholar 

  34. J. Bucaille, E. Felder, and G. Hochstetter, Wear 249, 422 (2001).

    Article  CAS  Google Scholar 

  35. K.L. Johnson, J. Mech. Phys. Solids 18, 145 (1970).

    Article  Google Scholar 

  36. J. Boussinesq, Application des potentials a l’etude de l’equilibre du movement des solides elastiques (Gauthier-Villars, Paris, France, 1885).

    Google Scholar 

  37. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover Publications, New York, 1944).

    Google Scholar 

  38. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).

    Book  Google Scholar 

  39. M.T.A. Saif, S. Zhang, M.A. Haque, and J. Hsia, Acta Mater. 50, 2779 (2002).

    Article  CAS  Google Scholar 

  40. J.F. Shackelford and W. Alexander, Materials Science and Engineering Handbook (CRC Press, Boca Raton, FL, 2001).

    Google Scholar 

  41. R. Saha and W.D. Nix, Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Tayebi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tayebi, N., Conry, T.F. & Polycarpou, A.A. Determination of hardness from nanoscratch experiments: Corrections for interfacial shear stress and elastic recovery. Journal of Materials Research 18, 2150–2162 (2003). https://doi.org/10.1557/JMR.2003.0301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0301

Navigation