Skip to main content
Log in

Promoting secondary nucleation using methane modulations during diamond chemical vapor deposition to produce smoother, harder, and better quality films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, we present results obtained from a comparison study relating to the deposition of diamond films using two processes, namely, time-modulated chemical vapor deposition (TMCVD) and conventional CVD. Polycrystalline diamond films were deposited onto silicon substrates using both hot-filament CVD and microwave plasma CVD systems. The key feature of TMCVD is that it modulates methane (CH4) flow during diamond CVD, whereas in conventional CVD the CH4 flow is kept constant throughout the deposition process. Films grown using TMCVD were smoother, harder, and displayed better quality than similar films grown using constant CH4 flow during CVD. The advantage of using TMCVD is that it promotes secondary nucleation to occur on existing diamond crystals. Pulsing CH4, consecutively, at high and low concentrations allows the depositing film to maintain its quality in terms of diamond-carbon phase. Films grown under constant CH4 flow during diamond CVD displayed a columnar growth mode, whereas with the time modulated films the growth mode was different. The mechanism of film growth during TMCVD is presented in this paper. The growth rate of films obtained using the hot filament CVD system with constant CH4 flow was higher than the growth rate of time modulated films. However, using the microwave-plasma CVD system, the effect was the contrary and the time-modulated films were grown at a higher rate. The growth rate results are discussed in terms of substrate temperature changes during TMCVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P.W. May, Philos. Trans. R. Soc. London A 358, 473 (2000).

    Article  CAS  Google Scholar 

  • M.N. Ashfold, P.W. May, C.A. Rego, and N.M. Everitt, Chemical Society Reviews (1994), p. 23.

  • N. Ali, W. Ahmed, I.U. Hassan, and C.A. Rego, Surf. Eng. 14, 292 (1998).

    Article  CAS  Google Scholar 

  • H. Chen, M.L. Nielsen, C.J. Gold, R.O. Dillon, J. DiGregorio, and T. Furtak, Thin Solid Films 212, 169 (1992).

    Article  CAS  Google Scholar 

  • J.T. Huang, W.Y. Yeh, J. Hwang, and H. Chang, Thin Solid Films 315, 35 (1998).

    Article  CAS  Google Scholar 

  • D.G. Lee and R.K. Singh, in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by D.E. Luzzi, T.F. Heinz, M. Iwaki, and D.C. Jacobson (Mater. Res. Soc. Symp. Proc. 354, Pittsburgh, PA, 1995), p. 699.

    Google Scholar 

  • Q.H. Fan, E. Pereira, P. Davim, J. Gracio, and C.J. Tavares, Surf. Coat. Technol. 126, 111 (2000).

    Article  Google Scholar 

  • H. Maeda, K. Ohtsubo, M. Irie, N. Ohya, K. Kusakabe, and S. Morooka, J. Mater. Res. 10, 3115 (1995).

    Article  CAS  Google Scholar 

  • R. Locher, C. Wild, N. Herres, D. Behr, and P. Koidl, Appl. Phys. Lett. 65, 34 (1994).

    Article  CAS  Google Scholar 

  • A.P. Malshe, B.S. Park, W.D. Brown, and H.A. Naseem, Diamond Rel. Mater. 8, 1198 (1999).

    Article  CAS  Google Scholar 

  • S.D. Wolter, F. Okuzumi, J.T. Prater, and Z. Siter, Phys. Status Solidi 186, 331 (2001).

    Article  CAS  Google Scholar 

  • B.D. Beake, I.U. Hassan, C.A. Rego, and W. Ahmed, Diamond Relat. Mater. 9, 1421 (2000).

    Article  CAS  Google Scholar 

  • D. Zhou, F.A. Stevie, and L. Chow, J. Vac. Sci. Technol., A 17, 1139 (2001).

    Google Scholar 

  • Q. Chen, D.M. Gruen, A.R. Krauss, T.D. Corrigan, M. Witck, G.M. Swain, J. Electrochem. Soc. 148, L4 (2001).

    Article  CAS  Google Scholar 

  • T. Sharda, M. Umeno, T. Soga et al., Appl. Phys. Lett. 77, 4304 (2001).

    Article  Google Scholar 

  • C. Gu, X. Jiang, and Z. Jin, J. Vac. Sci. Technol. 19, 962 (2001).

    Article  CAS  Google Scholar 

  • L.C. Chen, P.D. Kichambare, and K.H. Chen, J. Appl. Phys. 89, 753 (2001).

    Article  CAS  Google Scholar 

  • H. Ye, C.Q. Sun, and H. Huang, Appl. Phys. Lett. 78, 1826 (2001).

    Article  CAS  Google Scholar 

  • K.H. Park, S. Choi, K.M. Lee, S. Oh, S. Lee, K.H. Koh, J. Korean Phys. Soc. 37, L153 (2000).

    CAS  Google Scholar 

  • J.K. Kru¨ger, J.P. Embs, and S. Lukas, et al., J. Appl. Phys. 87, 74 (2000).

    Article  Google Scholar 

  • T. Sharda, T. Soga, T. Jimbo, and M. Umeno, Diamond Relat. Mater. 9, 1333 (2000).

    Article  Google Scholar 

  • D. Zhou, T.G. McCauley, D.M. Gruen, J. Appl. Phys. 83, 540 (1998).

    Article  CAS  Google Scholar 

  • P.D. Milewski, J. Soc. Inf. Disp. 6, 143 (1998).

    Article  Google Scholar 

  • H. Yagi, T. Ide, and Y. Mori, J. Mater. Res. 13, 1724 (1998).

    Article  CAS  Google Scholar 

  • T.G. McCauley, T. Noguchi, and Y. Miyasaka, Appl. Phys. Lett. 73, 1646 (1998).

    Article  CAS  Google Scholar 

  • J. Peng, P. Hong, and D.V. Szabo, J. Mater. Sci. Technol. 14, 173 (1998).

    CAS  Google Scholar 

  • J.R. Brenner, J.B.L. Harkness, and C.L. Marshall, Nanostruct. Mater. 8, 1 (1997).

    Article  CAS  Google Scholar 

  • J. Lee, B. Hong, and R.W. Collins, Appl. Phys. Lett. 69, 1716 (1996).

    Article  CAS  Google Scholar 

  • S.P. McGinnis, M.A. Kelly, and R.L. Alvis, J. Appl. Phys. 79, 170 (1996).

    Article  CAS  Google Scholar 

  • Q.H. Fan, N. Ali, Y. Kousar, W. Ahmed, and J. Gracio, J. Mater. Res. 17, 1563 (2002).

    Article  CAS  Google Scholar 

  • F. Silva, A. Gicquel, A. Chiron, and J. Achard, Diamond Relat. Mater. 9, 1965 (2000).

    Article  CAS  Google Scholar 

  • A. Gicquel, K. Hassouni, and F. Silva, J. Electrochem. Soc. 14716, 2218 (2000).

    Article  Google Scholar 

  • W. Zhu, A.R. Badzian, and R. Messier, in Diamond Optics 111, San Diego, CA, 1990 (SPIE Bellingham, WA, 1990), p. 187.

    Google Scholar 

  • C.F. Chen and T.M. Hong, Surf. Coat. Technol. 5, 143 (1993).

    Article  Google Scholar 

  • S. Kumar, P.N. Dixit, D. Sarangi, and R. Bhattacharyya, J. Appl. Phys. 85, 3866 (1999).

    Article  CAS  Google Scholar 

  • Q.H. Fan, J. Gracio, and E. Pereira, J. Appl. Phys. 87, 2880 (2000).

    Article  CAS  Google Scholar 

  • J. Wagner, C. Wild, and P. Koidl, Appl. Phys. Lett. 59, 779 (1991).

    Article  CAS  Google Scholar 

  • Q.H. Fan, Ph.D. Thesis, Department of Physics, University of Aveiro, Aveiro, Portugal (1998).

  • N. Ali, Q.H. Fan, W. Ahmed, and J. Gracio, Thin Solid Films (in press).

  • W. Kulisch, L. Ackermann, and G. Sobisch, Phys. Status Solidi A 154, 155 (1996).

    Article  CAS  Google Scholar 

  • J.W. Ager and M.D. Drory, Phys. Rev. B 48, 2601 (1993).

    Article  CAS  Google Scholar 

  • Y. Hayashi, W. Drawl, and R. Messier, Jpn. J. Appl. Phys. 31, L194 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, N., Neto, V.F. & Gracio, J. Promoting secondary nucleation using methane modulations during diamond chemical vapor deposition to produce smoother, harder, and better quality films. Journal of Materials Research 18, 296–304 (2003). https://doi.org/10.1557/JMR.2003.0041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0041

Navigation