Skip to main content
Log in

Thermal conductivity of ceramics in the ZrO2-GdO1.5system

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Low thermal conductivity ceramics in the ZrO2-GdO1.5 system have potential in structural (refractories, thermal barrier coatings, thermal protection) and nuclear applications. To that end, the thermal conductivities of hot-pressed xGdO1.5 ·(1 - x)ZrO2 (where x = 0.05, 0.15, 0.31, 0.50, 0.62, 0.75, 0.89, and 1.00) solid solutions were measured, for the first time, as a function of temperature in the range 25 to 700 °C. On the ZrO2-rich side, the thermal conductivity first decreased rapidly with increasing concentration of GdO1.5 and then reached a plateau. On the GdO1.5-rich side, the decrease in the thermal conductivity with increasing concentration of ZrO2 was less pronounced. The thermal conductivity was less sensitive to the composition with increasing temperature. The thermal conductivity of pyrochlore Gd2Zr2O7 (x = 0.5) was higher than that of surrounding compositions at all temperatures. A semiempirical phonon-scattering theory was used to analyze the experimental thermal conductivity data. In the case of pure ZrO2 and GdO1.5, the dependence of the thermal conductivity to the absolute temperature (T) was less than 1/T. Therefore, the minimum thermal conductivity theory was applied, which better described the temperature dependence of the thermal conductivity of pure ZrO2 and GdO1.5. In the case of solid solutions, phonon scattering by cation mass fluctuations and additional scattering by oxygen vacancies on the ZrO2-rich side and by gadolinium vacancies on the GdO1.5-side seemed to account for the composition and temperature dependence of the thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Suresh, G. Seenivasan, M.V. Krishnaiah, and P.S. Murti, J. Nucl. Mater. 249, 259 (1997).

    Article  CAS  Google Scholar 

  2. N.P. Padture, M. Gell, and E.H. Jordan, Science 296, 280 (2002).

    Article  CAS  Google Scholar 

  3. D.J.M. Bevan and E. Summerville, in Handbook on the Physics and Chemistry of Rare Earths: Non-Metallic Compounds I, edited by K.A. Gschneider and L.R. Eyring (North-Holland Physics Publishing, New York, 1979), Vol. 3, p. 412.

    Google Scholar 

  4. M.A. Subramanian and A.W. Sleight, in Handbook on the Physics and Chemistry of Rare Earths, edited by K.A. Gschneider and L. Erying (Elsevier Science Publishers, Oxford, U.K., 1993), Vol.16, p. 225.

    Google Scholar 

  5. R. Vaßen, X. Cao, F. Tietz, D. Basu, and D. Stöver, J. Am. Ceram. Soc. 83, 2023 (2000).

    Article  Google Scholar 

  6. M.J. Maloney, U.S. Patent No. 6 117 560 (2000).

    Google Scholar 

  7. M.J. Maloney, U.S. Patent No. 6 284 323 (2001).

    Google Scholar 

  8. G. Suresh, G. Seenivasan, M.V. Krishnaiah, and P.S. Murti, J. Alloys Compd. 269, L9 (1998).

    Article  Google Scholar 

  9. J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. Garcia, P. Miranzo, and M.I. Osendi, J. Am. Ceram. Soc. 85 (2002).

  10. T.A. Ring, Fundamentals of Ceramic Powder Processing and Synthesis (Academic Publishers, New York, 1996).

    Google Scholar 

  11. K.D. Maglic, A. Cezairliyan, and V.E. Peletsky, ASTM Standards E1461-92, E1269-92 (Plenum Press, New York, 1992).

    Google Scholar 

  12. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry (Pergamon Press, London, U.K., 1967).

    Google Scholar 

  13. R.A. Swalin, Thermodynamics of Solids (John Wiley & Sons, New York, 1972).

    Google Scholar 

  14. P.G. Klemens, High Temp.-High Press, 23, 241 (1991).

    CAS  Google Scholar 

  15. K.W. Schlichting, N.P. Padture, and P.G. Klemens, J. Mater. Sci. 36, 3003 (2001).

    Article  CAS  Google Scholar 

  16. S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, and M.J. Mayo, Scr. Mater. 39, 1119 (1998).

    Article  CAS  Google Scholar 

  17. S. Raghavan, H. Wang, W.D. Porter, R.B. Dinwiddie, and M.J. Mayo, Acta Mater. 49, 169 (2001).

    Article  CAS  Google Scholar 

  18. P.G. Klemens, in Thermal Conductivity, edited by R.P. Tye (Academic Press, !London, U.K., 1969), Vol. 1, p. 1.

    Google Scholar 

  19. P.G. Klemens, in Thermal Conductivity 23, edited by K.E. Wilkes, R.B. Dinwiddie, and R.S. Graves (Technomics Publishing Co., Lancaster, PA, 1996), p. 209.

    Google Scholar 

  20. G.A. Slack, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic Publishers, New York, 1979), Vol. 34, p. 1.

    Google Scholar 

  21. D.J. Green, R.H.J. Hannink, and M.V. Swain, Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1989).

    Google Scholar 

  22. D. Balestrieri, Y. Philipponneau, G.M. Decroix, Y. Jorand, and G. Fantozzi, J. Eur. Ceram. Soc. 18, 1073 (1998).

    Article  CAS  Google Scholar 

  23. M.C. Roufosse and P.G. Klemen, J. Geophys. Res. 79, 703 (1974).

    Article  Google Scholar 

  24. J. Tavernier, C. R. Acad . Sci. 245, 1705 (1957).

    Google Scholar 

  25. C.A. Ratsifaritana and P.G. Klemens, Int. J. Thermophys. 8, 737 (1987).

    Article  CAS  Google Scholar 

  26. M. Perez-Y-Jorba, Ann. Chim. (Paris) 7, 479 (1962).

    Google Scholar 

  27. J.H. Harris, R.C. Erk, and R.A. Youngblood, Phys. Rev. B 47, 5428 (1993).

    Article  CAS  Google Scholar 

  28. J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Surf. Coat. Technol. 151, 383 (2002).

    Article  Google Scholar 

  29. D. Zhu and R.A. Miller, Ceram. Eng. Sci. Proc. 23, (2002, in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin P. Padture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Padture, N.P., Klemens, P.G. et al. Thermal conductivity of ceramics in the ZrO2-GdO1.5system. Journal of Materials Research 17, 3193–3200 (2002). https://doi.org/10.1557/JMR.2002.0462

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0462

Navigation