Skip to main content
Log in

Growth of electromigration-induced hillocks in Al interconnects

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electromigration-induced hillock growth in polycrystalline Al segments was extensively investigated. Hillocks composed of columnar grains grew near the anode by epitaxial Al addition at the interface between the Al and underlying TiN layer, which pushed up the original Al film. The hillocks rotated away from their initial (111) out-of-plane orientation in a manner consistent with the physical rotation of the hillock surface. Wedgelike and rounded hillocks were observed, and their formation is explained by the interaction between grain extrusion and grain growth. Trends elucidated by review of both thermal- and electromigration-induced hillock studies can be explained by the mechanisms identified in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.A. Blech, J. Appl. Phys. 47, 1203 (1976).

    Article  CAS  Google Scholar 

  2. H. Mori, H. Okabayashi, and M. Komatsu, Thin Solid Films 300, 25 (1997).

    Article  CAS  Google Scholar 

  3. A. Buerke, H. Wendrock, T. Koetter, S. Menzel, K. Wetzig, and A.V. Glasow, in Materials Reliability in Microelectronics IX, edited by C.A. Volkert, A.H. Verbruggen, and D.D. Brown (Mater. Res. Soc. Symp. Proc. 563, Warrendale, PA, 1999), p. 109.

  4. P. Wang, J. Hwang, A. Chuang, and F-S. Huang, Thin Solid Films 358, 292 (2000).

    Article  CAS  Google Scholar 

  5. F. Ericson, N. Kristensen, and J-A. Schweitz, J. Vac. Sci. Technol. B 9, 58 (1991).

    Article  CAS  Google Scholar 

  6. D. Gerth, D. Katzner, and M. Krohn, Thin Solid Films 208, 67 (1992).

    Article  CAS  Google Scholar 

  7. B.C. Martin, C.J. Tracy, J.W. Mayer, and L.E. Hendrickson, Thin Solid Films 271, 64 (1995).

    Article  Google Scholar 

  8. D-K. Kim, B. Heiland, W.D. Nix, E. Arzt, M.D. Deal, and J.D. Plummer, Thin Solid Films 371, 278 (2000).

    Article  CAS  Google Scholar 

  9. F.Y. Genin and W.J. Siekhaus, J. Appl. Phys. 79, 3561 (1996).

    Article  Google Scholar 

  10. J. Böhm, C.A. Volkert, R. Mönig, T.J. Balk, and E. Arzt, J. Elect. Mater. 31, 45 (2002).

    Article  Google Scholar 

  11. J. Proost, L. Delaey, J. D’Haen, and K. Maex, J. Appl. Phys. 91, 9108 (2002).

    Article  CAS  Google Scholar 

  12. A. Gladkikh, Y. Lereah, E. Glickman, M. Karpovsky, A. Palevski, and J. Shubert, Appl. Phys. Lett. 66, 1214 (1995).

    Article  CAS  Google Scholar 

  13. C. Witt, Ph.D. dissertation, University of Stuttgart, Stuttgart, Germany (2000).

  14. H. Takatsuija, K. Tsujimoto, K. Kuroda, and H. Saka, Thin Solid Films 343–344, 461 (1999).

    Article  Google Scholar 

  15. R.A. Schwarzer and D. Gerth, J. Elect. Mater. 22, 607 (1993).

    Article  CAS  Google Scholar 

  16. D-K. Kim, W.D. Nix, R.P. Vinci, M.D. Deal, and J.D. Plummer, J. Appl. Phys. 90, 781 (2001).

    Article  CAS  Google Scholar 

  17. C.Y. Chang and R.W. Vook, Thin Solid Films 228, 205 (1993).

    Article  CAS  Google Scholar 

  18. P. Chaudhari, J. Appl. Phys. 45, 4339 (1974).

    Article  CAS  Google Scholar 

  19. L.M. Klinger, L. Levin, and E.E. Glickman, in Materials Reliability in Microelectronics V, edited by A.S. Oates, W.F. Filter, R. Rosenberg, A. Lindsay Greer, and K. Gadepally (Mater. Res. Soc. Symp. Proc. 391, Pittsburgh, PA, 1995), p. 271.

  20. E. Glickman and M. Nathan, Microel. Eng. 50, 329 (2000).

    Article  CAS  Google Scholar 

  21. R.A. Augur, R.A.M. Wolters, W. Schmidt, A.G. Dirks, and S. Kordic, J. Appl. Phys. 79, 3003 (1996).

    Article  CAS  Google Scholar 

  22. A. Straub, Ph.D. Dissertation, University of Stuttgart, Stuttgart, Germany (2000).

  23. I.A. Blech and C. Herring, Appl. Phys. Lett. 29, 131 (1976).

    Article  CAS  Google Scholar 

  24. M.A. Korhonen, P. Borgeson, K.N. Tu, and C-Y. Li, J. Appl. Phys. 73, 3790 (1993).

    Article  CAS  Google Scholar 

  25. P.C. Wang, G.S. Cargill, I.C. Noyan, and C-K. Hu, Appl. Phys. Lett. 72, 1296 (1998).

    Article  CAS  Google Scholar 

  26. O.V. Kononenko, V.N. Matveev, and D.P. Field, J. Mater. Res. 16, 2124 (2001).

    Article  CAS  Google Scholar 

  27. M.S. Jackson and C-Y. Li, Acta. Metall. 30, 1993 (1982).

    Article  CAS  Google Scholar 

  28. R.E. Reed-Hill, Physical Metallurgy Principles, 2nd ed. (Litton, Monterey, CA, 1973), p. 195.

    Google Scholar 

  29. C.V. Thompson, J. Mech. Phys. Solids 44, 657 (1996).

    Article  CAS  Google Scholar 

  30. F.Y. Genin, J. Appl. Phys. 77, 5130 (1995).

    Article  CAS  Google Scholar 

  31. W.D. Nix, Metall. Trans. 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  32. E. Arzt, M.F. Ashby, and R.A. Verrall, Acta. Metall. 31, 1977 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Nucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nucci, J.A., Straub, A., Bischoff, E. et al. Growth of electromigration-induced hillocks in Al interconnects. Journal of Materials Research 17, 2727–2735 (2002). https://doi.org/10.1557/JMR.2002.0394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0394

Navigation