Skip to main content
Log in

Anisotropic Grain Growth of Al-Si Wire Under Electromigration Tests in Power Devices

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructure evolution of Al-1 wt% Si alloy wires with a diameter of 50.8 μm bonded on Cu metallization was investigated under electromigration (EM) tests with a current density of 7 × 104 A/cm2 at an ambient temperature of 150 °C. After the EM tests, microstructure of the wire evolved from submicron slender grains into bamboo-type grains with diameters 100 times larger than the original ones because of anisotropic grain growth (AGG) in the radial direction of wire. The orientations of grains also changed from highly [111] oriented into random distribution. In addition, bamboo nodes created by distortion of bamboo-type grains were found near cathodes while protrusions were observed near anodes of the wire. The mechanisms of AGG as well as the orientation change are proposed and delineated in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Komiyama, Y. Chonan, J. Onuki, M. Koizumi, and T. Shigemura, Jpn. J. Appl. Phys. 41, 5030 https://doi.org/10.1143/JJAP.41.5030 (2002).

    Article  Google Scholar 

  2. Y. Fujii, Y. Ishikawa, S. Takeguchi, and J. Onuki, Proceedings of the 2012 24th International Symposium on Power Semiconductor Devices and ICs, (2012) 279–282. doi: https://doi.org/10.1109/ISPSD.2012.6229077.

  3. H. Xu, C. Liu, V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, and V.L. Acoff, Intermetallics 19, 1808 https://doi.org/10.1016/j.intermet.2011.07.003 (2011).

    Article  Google Scholar 

  4. H.T. Orchard, and A.L. Greer, J. Electron. Mater. 35, 1961 (2006).

    Article  Google Scholar 

  5. E. Zin, N. Michael, S.H. Kang, K.H. Oh, U. Chul, J.S. Cho, J.T. Moon, and C.-U. Kim, 2009 59th Electronic Components and Technology Conference , (2009) 943–947. doi: https://doi.org/10.1109/ECTC.2009.5074126

  6. F.W. Wulff, C.D. Breach, D. Stephan, S. Saraswati, and K.J. Dittmer, Proc. 6th Electron. Packag. Technol. Conf. (EPTC 2004) (IEEE Cat. No.04EX971), (2004) 348–353. doi:https://doi.org/10.1109/EPTC.2004.1396632.

  7. Y.Y. Tan, and K.S. Sim, Electron. Lett. 50, 1095 (2014).

    Article  Google Scholar 

  8. B. Chylak, J. Ling, H. Clauberg, and T. Thieme, ECSTrans. 18, 777 (2009).

    Google Scholar 

  9. M. Hook, D. Xu, and M. Mayer, IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), (2014) 1–6. doi:https://doi.org/10.1109/CCECE.2014.6901111.

  10. H. Ji, M. Li, C. Wang, and J.H.S. GuanBang, J. Mater. Process. Technol. 182, 202 https://doi.org/10.1016/j.jmatprotec.2006.07.033 (2007).

    Article  Google Scholar 

  11. O. Mokhtari, M.-S. Kim, H. Nishikawa, F. Kawashiro, S. Itoh, T. Maeda, T. Hirose, and T. Eto, Trans. Jpn. Inst. Electron. Packag. 7, 1–7 https://doi.org/10.5104/jiepeng.7.1 (2014).

    Article  Google Scholar 

  12. H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, and Z. Chen, Scr. Mater. 61, 165 https://doi.org/10.1016/j.scriptamat.2009.03.034 (2009).

    Article  Google Scholar 

  13. Xu. Hui, C. Liu, V.V. Silberschmidt, and Z. Chen, J. Electron. Mater. 39, 124 https://doi.org/10.1007/s11664-009-0951-8 (2010).

    Article  Google Scholar 

  14. M. Ciappa, Microelectron. Reliab. 42, 653 https://doi.org/10.1016/S0026-2714(02)00042-2 (2002).

    Article  Google Scholar 

  15. T.-H. Chuang, H.-C. Wang, C.-H. Chuang, J.-D. Lee, and H.-H. Tsai, J. Electron. Mater. 42, 545 https://doi.org/10.1007/s11664-012-2381-2 (2013).

    Article  Google Scholar 

  16. Department of Defense (DOD), “MIL-STD-883E Test Method Standard - Microcircuits,” Mil-Std. 570 (1996).

  17. I.A. Blech, J. Appl. Phys. 47(4), 1203 (1976).

    Article  Google Scholar 

  18. T. B. Massalski, Binary Alloy Phase Diagrams, vol. 2. 1990.

  19. A. Wolfenden, and J.M. Wolla, J. Mater. Sci. 24, 3205 (1989).

    Article  Google Scholar 

  20. W. F. Gale and T. C. Totemeir, Smithells Metals Reference Book, Smithells Met. Ref. B., pp. 1–2072, 2004.

  21. H.B. Huntington, and A.R. Grone, J. Phys. Chem. Solids 20, 76 (1961).

    Article  Google Scholar 

  22. A. Lodder and J. P. Dekker, “The electromigration force in metallic bulk,” In: Fourth international workshop on stress induced phenomena in metallization, 1998, pp. 315–328.

  23. A. Charlesby, CRC materials science and engineering handbook, vol. 49, no. 2. 1997.

  24. Reza Abbaschian and Robert E. Reed-Hill, “Physical Metallurgy Principles,” 4th ed., Cengage Learning, 2008.

Download references

Acknowledgements

The authors appreciate the funding support given by National Science and Technology Council (NSTC) in Taiwan under Contract No. 111-2628-E-007-013 -MY3 and equipment support from Instrumentation Center at National Tsing Hua University (NTHU) for their JEOL JSM-7610F field emission scanning electron microscope analysis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F-YO; Data curation, Y-WT; Funding acquisition, F-YO; Investigation, Y-WT; Methodology, Y-WT; Supervision, F-YO; Writing original draft, Y-WT; Writing-review & editing, F-YO.

Corresponding author

Correspondence to Fan-Yi Ouyang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All authors have given approval to the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsau, YW., Ouyang, FY. Anisotropic Grain Growth of Al-Si Wire Under Electromigration Tests in Power Devices. JOM 75, 3807–3815 (2023). https://doi.org/10.1007/s11837-023-05965-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-023-05965-6

Navigation